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ABSTRACT

Surface ocean partial pressure of CO2 (pCO) is a critical parameter in the quantification
of air-sea CO> flux, which further plays an important role in quantifying the global carbon budget
and understanding ocean acidification. The demand for a clearer understanding of how, and how
fast, the ocean is changing due to atmospheric CO> absorption, requires accurate and synoptic

estimation of surface pCO..

Surface ocean pCO; is mainly controlled by four oceanic processes — thermodynamics,
ocean mixing, biological activities, and air-sea CO> exchange. Surface ocean pCO: is therefore
closely related to environmental variables that characterize each oceanic process. These variables
include sea surface temperature (SST), sea surface salinity (SSS), chlorophyll-a concentration
(Chl), diffuse attenuation of downwelling irradiance (Kq), and wind speed. Ocean color satellites
provide a means by which the relationship between these environmental variables and surface
pCO2 can be developed. Yet, remote estimation of surface pCO: in coastal oceans has been
difficult due to the dynamic and complex biogeochemical processes. To date, most of the published
satellite-based pCO2 models are developed for single-process dominated regions, therefore having
poor applicability in other oceanic regions. Particularly, there is no unified approach, let alone
unified model, to remotely estimate surface pCO2 in oceanic regions that are dominated by

different oceanic processes.

This work provides solutions to these challenging issues for the remote estimation of

surface pCOz in the Gulf of Mexico (GOM), with the following objectives: 1) Develop satellite-
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based surface pCO, models and data products for single-process dominated subregions of the
GOM, and quantify the sensitivities of the pCO> algorithms to the input environmental variables;
2) Quantify the oceanic processes in controlling surface pCO: in the GOM, analyze the
relationships between environmental variables and surface pCO2, and understand the mechanisms
of seasonal and interannual variations of surface pCO. and its driving factors; 3) Develop an
improved SSS model and data products for most GOM waters, and quantify the sensitivities of the
SSS model to the input variables; 4) Develop a unified pCO2 model and data products for the GOM
waters, and quantify the sensitivities of the pCO> model to the input environmental variables and
their relationships; 5) Quantify the temperature and non-temperature effects on surface pCO: at
different latitudes, analyze the dominant controls and the corresponding the driving factors of
surface pCO». The data used in this dissertation include those from extensive cruise surveys, buoy
measurements, and long-term measurements by the Moderate Resolution Imaging

Spectroradiometer (MODIS).

Specifically, for single-process dominated regions, two separate algorithms are developed
and validated, respectively, from MODIS measurements. One is focused on the ocean current-
dominated West Florida Shelf (WFS) (Appendix A), and the other is on the river-dominated
northern GOM (Appendix B). The former utilizes a multi-variate nonlinear regression approach to
establish the relationship between surface pCOz and environmental variables of SST, Chl, and Kg.
The latter relies on a mechanistic semi-analytical approach (MeSAA), modified from an existing
algorithm published earlier. Both algorithms show satisfactory performance, yet the latter requires
SSS as the model input, which is difficult to obtain from ocean color satellite measurements.
Therefore, a multilayer perceptron neural network-based (MPNN) SSS model is developed and

validated, which generates SSS maps at 1-km resolution for the GOM using MODIS

Vi
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measurements (Appendix C). Finally, with the availability of SSS from MODIS for the GOM, a
unified pCO- algorithm is developed and validated. The machine-learning algorithm is based on a
random forest regression ensemble (RFRE), which is able to estimate surface pCO. from MODIS
measurements with a Root Mean Square Error (RMSE) of < 10 patm and R? of 0.95 for pCO;
ranging between 145 and 550 patm (Appendix D). Using this approach, The RFRE algorithm is
shown to be applicable to the Gulf of Maine (a contrasting oceanic region to GOM) after local
model tuning. The results show significant improvement over other models, suggesting that the
RFRE approach may serve as a template for other oceanic regions once sufficient field-measured

pCO; data are available for local model tuning.

To further improve the accuracy of satellite-derived surface pCO> from coastal oceans and
to increase its capability in capturing the interannual variations of surface pCO: resulting from
anthropogenic forcing, the dominant controls of surface pCOz over seasonal and interannual time
scales need to be better understood. As such, in situ pCO> time series data along the coasts of the
United States of America at different latitudes are analyzed (Appendix E). On a seasonal time
scale, surface pCO. tends to be dominated by the temperature effect (pCO,_T) through SST and
wind speed (with some exceptions) in tropical and subtropical oceans, but appears to be dominated
by the non-temperature effect (pCO-_nonT) in subpolar regions. In contrast, in tropical and
subtropical waters on interannual time scales, surface pCO> is primarily moderated by the non-
temperature effect (through air-sea CO. exchange via atmospheric pCO.), but conversely
dominated by the temperature effect (i.e., SST increase) in subpolar regions. The effects of

biological activities (i.e., algal blooms) need to be further investigated in the future.

Overall, this dissertation has developed several algorithms to estimate SSS and surface

pCO2, among which the unified pCO> algorithm for multi-processes dominated regions appears to
vii
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be able to serve as a template for many other regions after local model tuning. The derived surface
pCO:> data products for the GOM provide a fundamental basis to assess air-sea exchange of CO>

and understand the carbon chemistry under a changing climate.

viii
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CHAPTER 1:

INTRODUCTION

1. Surface ocean pCO2 and environmental controls

When CO; from the atmosphere enters seawater, a chain of reactions can occur, which can
produce carbonic acid, bicarbonate, and carbonate (Kanwisher, 1960). The free aqueous CO> in
seawater is quantified as partial pressure of CO2 (pCOz2), which refers to the fugacity in most cases

(Pilson, 2012). The term fugacity expresses the tendency of CO; to escape from the seawater.

Knowledge of spatial and temporal distributions of pCO. in surface ocean waters is
essential to understanding of carbon cycling and ocean acidification (Borges, 2005; Bauer et al.,
2013). Since the industrialization era, ocean acidity has increased by 30% (~0.1 decrease in pH
units), corresponding to a 40% increase in atmospheric CO; (Sabine et al., 2004; Solomon et al.,
2007; Feely et al., 2009; Pachauri and Meyer, 2014). As a result, a degradation of ecological
environment and a decrease in marine biodiversity have been observed (Reynaud et al., 2003; Orr
et al., 2005; Kleypas et al., 2006; Kleypas and Yates, 2009). Knowledge of surface pCO; also
helps to quantify air-sea CO> flux (Borges et al., 2005; 2006; Cai et al., 2006). The benefits of
quantifying air-sea CO> flux are twofold: 1) it can help to better understand the ocean acidification
process; and 2) it can provide insight into carbon cycling. Synoptic and frequent surface pCO>

measurements are critical to quantifying the air-sea CO> flux and ocean acidity.

The variation of surface pCO- is complex, being closely related to the carbonate parameters:

pH, total dissolved inorganic carbon (DIC, umol kg™) and total alkalinity (TA, umol kg?) (Pilson,
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2012). In a carbonate system, once sea surface temperature (SST, °C), sea surface salinity (SSS,
practical salinity unit) and pressure are known, any two parameters of TA, DIC, pCO2, and pH can
be used to calculate the other two and CO; speciation (i.e., [CO3?] and thus the carbonate mineral
saturation state) using the CO2 System Program (CO2SYS) (Pierrot and Wallace 2006). In
principle, surface water pCO: in the ocean is mainly controlled by four processes: physical mixing,
thermodynamic effects, biological activities, and air-sea CO2 exchange (Fennel et al., 2008; Ikawa
et al., 2013; Xue et al., 2016). These processes usually do not affect surface pCO> independently,

but in an interrelated fashion (Murata, 2006).

1.1. Thermodynamic effects

Ocean thermodynamic effect on surface pCO- is dependent on SST, which influences the
solubility of gaseous CO» (Weiss, 1974). The relationship between surface pCO, and SST can be
estimated with an exponential function (pC0,@r, = PCO@r: X €%0423X(T2=T1)) (Takahashi et al.,
2002; 2009) although the exact parameter can deviate slightly from 0.0423 in coastal waters (Bai
et al., 2015; Joesoef et al., 2015). The equation shows that an increase of SST increases surface
pCO., and vice versa. SST is primarily regulated by several physical processes such as solar energy
radiation, air-sea heat exchanges, and vertical oceanic mixing (Takahashi et al., 2002). Studies
show that SST is the dominant factor in controlling seasonal variations of surface pCO: in the

subtropical oligotrophic ocean waters (Takahashi et al., 2002; Fay and McKinley, 2017).
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1.2. Biological activities

Biological activities in the ocean such as photosynthesis, respiration, and calcification have
direct effects on surface pCO2 because photosynthesis consumes CO., respiration produces CO»,

and calcification depletes both TA and DIC in a 2 to 1 ratio (Murata and Takizawa, 2002).

Photosynthesis by phytoplankton is mainly controlled by the concentrations of surface
nutrients (i.e., [NOs], [SO4?], [Fe*?]), SST, and light availability, which are all set by the physical
environment (Fay and McKinley, 2017). Under optimal conditions (i.e., sufficient nutrients and
sunlight at proper water temperatures, usually in spring and fall), phytoplankton blooms occur. In
most cases, phytoplankton blooms (e.g., cyanobacteria blooms) would bring a distinct decrease in
surface pCO2 due to the great consumption of COz in the production of organic carbons (Schneider
et al., 2006; Martz et al., 2009). However, there are some exceptions. For example, Shadwick et
al. (2011) found that spring blooms could introduce a sharp drop of surface pCO; by ~ 180 patm,
while the blooms in fall did not appear to change the surface pCO,. This lack of change has been
mainly attributed to the competing effect of decreasing SST, though the bloom can be clearly
detected from satellite images. Furthermore, for phytoplankton blooms that also produce calcium
carbonate (e.g., coccolithophorid, E. huxleyi), it was found that such phytoplankton blooms could
result in an increase in surface pCO> (Murata and Takizawa, 2002; Murata, 2006). In these type of
algal blooms, both DIC and TA would decrease during the bloom. It has been observed that if the
ratio of calcification to photosynthesis during the bloom is between 1:1 and 2:1, the production of
CO2 via calcification would balance and exceed the consumption of CO- through photosynthesis

(Murata and Takizawa, 2002; Murata, 2006).

In general, the overall effect of biological activities on surface pCO- is quite complex.

Currently, the most common proxies for this biological term include chlorophyll concentrations

3
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(Chl, mg m) and light attenuation coefficients (Salisbury et al., 2008; Zhu et al., 2009; Hales et
al., 2012; Signorini et al., 2013; Fay and McKinley, 2017). In addition, studies show that the
biologic effect on surface pCO- only dominates in high-latitude waters greater than 40° latitude in

both hemispheres (Takahashi et al., 2002; Fay and McKinley, 2017).

1.3. Ocean mixing

Different water masses have specific carbonate characteristics such as TA and DIC. The
horizontal and vertical mixing among these water masses can affect the surface pCO distribution
in a dynamic way. For example, the mixing between the ice meltwater (typically with a low DIC
value) with the surrounding seawater in the Arctic Ocean would reduce pCO> by 50-60 patm,
which compensates the increase of pCO; caused by the water warming in summer (Cai et al., 2010).
In river-dominated coastal oceans (e.g., the northern Gulf of Mexico and the East China Sea), the
riverine water mass (i.e., river plume) has distinct water properties (i.e., SST, SSS, TA, DIC, and
nutrients) relative to those of the seawater. The mixing between the fresh/brackish riverine waters
and seawater have great impact on the variation of surface pCOg, in terms of the conservative
mixing of the carbonate properties (i.e., TA and DIC), as well as the nutrient-enhanced
phytoplankton blooms (e.g., Lohrenz and Cai, 2006; Lohrenz et al., 2010; Bai et al., 2015). In
addition, the surface cooling-induced, or wind-induced, vertical mixing and ocean upwelling also
varies surface pCOz. This is because vertical mixing and upwelling transport DIC enriched (mostly
CO: enriched) waters to the surface where they generally release CO. into the atmosphere.
However, in the presence of nutrient-enriched surface waters, phytoplankton production would be
enhanced and uptake of atmospheric CO2 would occur (e.g., Hales et al., 2005; Ikawa et al., 2013;

Norman et al., 2013; Huang et al., 2015).
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Oceanic water masses derived from melted ice and river sources typically have low SST
and SSS. Oceanic water masses brought to the surface via vertical mixing and upwelling usually
have lower temperature and salinity values. Therefore, SST and SSS are commonly used as proxies
to quantify the effect of ocean mixing on surface pCO: (e.g., Lohrenz and Cai, 2006; Lohrenz et
al., 2010; 2018; Hales et al., 2012; Signorini et al., 2013; Bai et al., 2015). In addition to SST and
SSS, wind speed and the mixed layer depth was also used in some studies (Jamet et al., 2007;

Chierici et al., 2009; Shadwick et al., 2010; Nakaoka et al., 2013).

1.4. Air-Sea CO:2 exchange

The difference between the surface ocean pCO: and atmospheric pCO. at the air-sea
interface represents the thermodynamic driving potential for the CO. to transfer across the air-sea
interface (Takahashi et al., 2002). The direction of the net CO; transfer is governed by the pCO>
differences between the ocean’s surface and its overlying atmosphere. On seasonal time scales, Lu
etal. (2012) found that air-sea CO2 exchange exceeded the role of SST and dominated the seasonal
variations of surface pCO- in the northern South China Sea. On short time scales (i.e., a few days
up to 3 weeks), extreme weather events such as hurricanes also have strong impact on surface
pCO,, via air-sea CO; exchange. It’s known that the rate of air-sea CO, exchange depends on the
gas transfer velocity, which is a function of wind speed. During high-wind events (i.e., hurricanes,
and strong storms), the wind speed is usually greater than 10 m s™*. Bates et al. (1998) found that
hurricanes in the Sargasso Sea could greatly increase the outgassing of CO. from the ocean surface
to the atmosphere and decrease the surface pCO> further, despite the strong cooling effect during
the events (which would also decrease surface pCOz by ~60 patm). However, Turk et al. (2013)

shows that episodic high wind events would increase surface pCO- by 30-50 patm, regardless of
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the pre-event conditions of the upper ocean water mass (either stratified, non-stratified,

oversaturated, or under-saturated).

In most cases (except extreme events), air-sea CO» exchange has little effect on the surface
pCO; during short-time scales, mainly due to buffering of the carbonate system (Murata et al.,
2002; Bai et al., 2015). However, during long-time scales, surface pCO2 has changed with time,
especially during the anthropogenic increase of atmospheric pCO> (Takahashi et al., 2002; 2009),
and atmospheric pCO- can be used as a proxy to quantify how air-sea CO2 exchange affects surface

pCO; (Lefevre and Taylor, 2002).

2. Satellite estimation of surface ocean pCOz2

Synoptic and frequent surface pCO> measurements are critical to quantifying the air-sea
CO: flux and ocean acidification. Due to data scarcities of surface pCO. from ship-based
measurements and their limitations in spatial and temporal coverages, large uncertainties exist in
the resultant air-sea CO; fluxes (e.g., Takahashi et al., 2002; 2009; Tseng et al., 2011; Vandemark
etal., 2011; Geilfus et al., 2012). Numerical models have been used to estimate surface pCO. (Xue
et al., 2014; Arruda et al., 2015), however the model results are strongly dependent on the
assumption of the initial conditions. In contrast, recent advances in satellite ocean color remote
sensing have shown its capacity in synoptic and frequent mapping of surface pCO; through

developing relationships between environmental variables and surface pCO..

2.1. Satellite-derived environmental variables

Although surface pCO: is mainly controlled by the four processes as described in Section

1, in practice, it is hard to accurately quantify each of them separately due to the interactions among

6
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them. Therefore, most of the satellite mapping models of surface pCO. are empirical (see Section
2.2 for details), and the most commonly used environmental variables include SST, SSS, Chl (e.qg.,
Lohrenz and Cai, 2006; Lohrenz et al., 2010; 2018; Hales et al., 2012; Signorini et al., 2013; Bai
et al., 2015). SST and SSS are proxies for the thermodynamic and ocean mixing effects, and Chl
is a proxy for biological activities. In addition to these variables, some studies also used a beam
attenuation coefficient, absorption of the Colored Dissolved Organic Matter (CDOM), Mixed
Layer Depth (MLD), and wind speed as auxiliary variables to quantify surface pCO> in some
oceanic regions (e.g., Jamet et al., 2007; Salisbury et al., 2008; Chierici et al., 2009; Shadwick et

al., 2010; Nakaoka et al., 2013; Parard et al., 2014).

Of the commonly used environmental variables, SST and ocean color data products (i.e.,
Chl, CDOM, diffuse attenuation coefficient of the downwelling irradiance (Kq, m™)) are available
from the ocean color satellites such as Moderate Resolution Imaging Spectroradiometer (MODIS).

However, currently there is no standard SSS data from these ocean color satellites.

The satellites designed to “measure” SSS, such as the ESA SMOS (the Soil Moisture and
Ocean Salinity) and NASA Aquarius/SAC-D, lack sufficient spatial (30-100 km) and temporal
resolution (> 3days revisit period), and they are not designed for dynamic coastal waters (Lagerloef
et al., 2008; Font et al., 2010). Since CDOM is a good tracer of SSS in coastal oceans (e.g., Hu et
al., 2003; Coble et al., 2004; Del Vecchio and Blough, 2004), several studies have demonstrated
the potentials of ocean color satellites in deriving SSS via empirical models (e.g., Bai et al., 2013;
Geiger et al., 2013; Qing et al., 2013; Vandermeulen et al., 2014; Zhao et al., 2017). However,
these models are region-dependent and may have poor applicability in other coastal waters,

considering the difference of optical complexities among coastal regions. Therefore, in order to
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map the surface pCO. from satellites in different coastal ocean settings, SSS data products from

ocean color need to be developed first.

2.2. Satellite mapping of surface pCOz2: current status

At present, most of the published literature correlate surface pCO> to the environmental
variables (SST, SSS, Chl, etc.) via traditional empirical regression and machine learning
approaches (i.e., neural network) with variable performance in different oceanic regions (e.g.,
Stephens et al., 1995; Rangama et al., 2005; Wanninkhof et al., 2007; Zhu et al., 2009; Chierici et
al., 2009; Friedrich and Oschlies, 2009; Telszewski et al., 2009; Signorini et al., 2013; Nakaoka et
al., 2013; Parard et al., 2014). Specifically, for the open oceans, the satellite pCO2 models often
yield results with Root Mean Square Error (RMSE) between 10 and 20 patm (e.g., Table 1), while
for the coastal oceans, the model RMSE is > 20 patm in most cases (Table 2). Some studies also
proposed semi-analytical approaches to estimate surface pCO., but with larger error (RMSE > 30

patm) (Hales et al., 2012; Bai et al., 2015; Song et al., 2016).

Table 1: List of published satellite pCO2 remote sensing algorithms for open ocean waters. It
should include most, if not all, the published studies of surface pCO> from remote sensing in the

open oceans.

Reference Study area Model input Model Model uncertainty

Stephens et al. (1995) North Pacific SST, LON MPR RMSE=+17 patm (subtropical),
RMSE=+40patm (subpolar)

Sarma (2003) Arabian Sea SST, SSS, CHL MLR for DIC and TA | errors=+5-30 patm

Lefevre and Taylor Atlantic Gyre SST, LAT, LON, MLR R=0.95~0.99

(2002) atmospheric pCO,

Olsen et al. (2004) Caribbean Sea SST, LAT, LON MLR RMSE=9.5 patm,R?=0.8

Ono et al. (2004) North Pacific SST, CHL MPR RMSE=£14 patm (subtropical),
RMSE=+17 patm (subpolar)

Rangama et al. (2005) Southern ocean SST, CHL MLR STD=2.6~7.9 patm

Sarma et al. (2006) North Pacific SST, SSS, CHL MLR for DIC and TA | RMSE=17~23 patm

www.manaraa.com



Table 1 (Continued)

Reference Study area Model input Model Model uncertainty
Jamet et al. (2007) North Atlantic SST, CHL, MLD MLR R=0.45~0.86, RMSE = 8.98~15.01
patm

Berryman et al. (2008) Central Pacific SST, SSS, CHL MLR R?*=0.59, p <0.02

Chierici et al. (2009) Northern North SST, CHL, MLD MPR RMSE=10.8 patm, R>=0.72
Atlantic

Telszewski et al. (2009) | North Atlantic SST, CHL, MLD SOM RMSE=11.6 patm

Friedrich and Oschlies North Atlantic SST, CHL KFM RMSE=19 patm

(2009)

Chen et al. (2011) Southern Atlantic and | SST, CHL MLR R?=0.77, 0.85, STD=1.21, 21.0
Indian Ocean patm

Nakaoka et al. (2013) North Pacific SST, SSS, CHL, MLD | SOM RMSE=17.6~20.2 patm

Moussa et al. (2016) Tropical Atlantic SST, SSS, CHL FNN RMSE=8.7~9.6 patm

Xu et al. (2017) Southern Ocean SST, CHL MLR RMSE=13.6~21.3 patm

Note: MLR=Multiple Linear Regression; MPR=Multiple Polynomial Regression; SOM=Self Organising Map; KFM=Kohonen Feature Map;

FNN=Feedforward Neural Network; STD=Standard Deviation, R=Correlation Coefficient; SST=Sear Surface Temperature,

CHL~=Chlorophyll concentration; MLD=Mixed Layer Depth; LAT=Latitude; LON=Longitude; TA=Total Alkalinity; DIC=Dissolved

Inorganic Carbon.

Table 2: List of published satellite pCO2 remote sensing algorithms for coastal ocean waters. It
should include most, if not all, the published studies of surface pCO> from remote sensing in the

coastal oceans.

Reference Study area Model input Model Model uncertainty
Lefevre et al. Coast off Chile SST, SSS, CHL MLR STD=35 patm, R*=0.65
(2002)
Lohrenz and Cai Mississippi River SST, SSS, CHL PCA and MLR R?=0.743, RMSE=50.2
(2006) delta patm
Evans et al. (2008) Oregon and SST, CHL Not available Not available
Washington Shelf
Zhu et al. (2009) Northern South China | SST, CHL MPR R?=0.66~0.68,
Sea RMSE=4.6~25.1 patm
Shadwick et al. Scotian Shelf SST, CHL, wind speed MLR STD=13 patm,R?=0.81
(2010)
Borges et al. (2010) | Belgian coastal zone SST, CHL MPR Not available
Lohrenz et al. Mississippi River SST, SSS, CHL PCA and MLR R?=0.165~0.976, p<0.001
(2010) delta
Karagali et al. Peru and Namibia SST, CHL MPR R?=0.67~0.72
(2010)
Wipf et al. (2012) Santa Barbara SST, CHL, NOy MLR Not available
Channel
Joetal. (2012) Northern South China | SST, CHL, LAT, LON FFBP RMSE=6.9 patm, R’=0.98
Sea
Hales et al. (2012) North American West | SST, CHL Quasi-mechanistic | R=0.61~0.93,
Coast model RMSE=6.6~65 patm
Tao et al. (2012) Huanghai Sea and SST, CHL MPR RMSE=15.82~31.74 patm
Bohai Sea
Signorini et al. North American East SST, SSS, CHL, Jday MLR R?>=0.42~0.82,
(2013) Coast RMSE=22.4~36.9 patm
Marrec et al. (2014) | Western English SST,SSS,CHL,MLD,Jday,LAT,LON MLR RMSE=17.2,21.5 patm,
Channel R?=0.71,0.79
Parard et al. (2014) | Baltic Sea SST,CHL,CDOM,NPP,MLD,Jday MLR and SOM RMSE=35 patm, R?=0.93
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Table 2 (Continued)

Reference Study area Model input Model Model uncertainty

Qin et al. (2014) Yellow Sea SST, CHL MPR RMSE=16.68~21.46 patm

Bai et al. (2015) East China Sea TA, DIC, CHL MeSAA Not available, but large
data scattering in
validation

Marrec et al. (2015) | European shelf SST, CHL, wind speed, PAR, MLD MLR RMSE=16, 17 patm

Padhy et al. (2015) Hooghly Estuary SST, CHL MPR RMSE=18 patm

Song et al. (2016) Bering Sea SST, CHL MeSAA STD=17.67~74.8 patm

Lohrenz et al. Mississippi River SST, CDOM, CHL Regression tree RMSE = 30.8 patm

(2018) delta

Joshi et al. (2018) Apalachicola Bay SST, CDOM, CHL MLR Uncertainty = +101 ppm
and £643 ppm

Note: MLR=Multiple Linear Regression; MPR=Multiple Polynomial Regression; SOM=Self Organising Map; KFM=Kohonen Feature Map;

FNN=Feedforward Neural Network; FFBP= Feed Forward Back Propagation; MeSAA=Mechanistic Semi-Analytical Algorithm;

PCA=Principal Component Analysis; STD=Standard Deviation; R=Correlation Coefficient; SST=Sear Surface Temperature, SSS=Sea Surface

Salinity; CHL=Chlorophyll concentration; MLD=Mixed Layer Depth; LAT=Latitude; LON=Longitude; TA=Total Alkalinity; DIC=Dissolved

Inorganic Carbon; CDOM=Colored Dissolved Organic Matter; NPP=Net Primary Production, PAR=Photosynthetically Active Radiation;

Jday=Julian day.

Regardless if an empirical or semi-analytical approach is used, the resulting published
satellite pCO2 model depends on the assumptions made for a specific oceanic region (e.g., river
dominated, ocean-current dominated, or upwelling dominated). To date, there is no unified pCO-
approach, let alone a unified pCO2> model with region-specific parameterization, available to
estimate surface pCO> from satellites for a large oceanic domain (e.g., the Gulf of Mexico) that
contains several different oceanic processes. The difficulty in obtaining a unified approach to
estimate surface pCO> from satellites with relatively lower uncertainties is due mostly to the

complexity and dynamics of the biogeochemical and physical processes in such regions.

In some of the published satellite-based pCO2 models, the monthly mean satellite products
or climatology for Chl are used as model inputs to compensate for the scarcities of concurrent and
co-located satellite measurements of Chl. These satellite measurements are paired with in situ
pCO:> to develop a model. As a result, significant uncertainties could exist in the nonlinear pCO>
models (Zhu et al., 2009; Jo et al., 2012; Hale et al., 2012; Signorini et al., 2013; Parard et al.,

2014). Likewise, the sensitivity of the established models to each input variable has rarely been
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studied (Lefévre et al., 2002; Olsen et al., 2004; Zhu et al., 2009; Lohrenz and Cai, 2006; Lohrenz
etal., 2010; Borges et al., 2010; Parard et al., 2014). As satellite-derived variables (i.e., SST, SSS,
and Chl) have inherent uncertainties (Hu et al., 2009; Cannizzaro et al., 2013), error propagation
in model-derived pCO- needs to be understood, especially for regions with potentially large
uncertainties in these satellite-derived variables. Therefore, in this study, the uncertainties in
satellite products used in the pCO2 model will be quantified to better understand their error

propagations.

3. Study area

As the largest semi-enclosed marginal sea of the western Atlantic, the Gulf of Mexico
(GOM) encompasses the West Florida Shelf (WFS), Louisiana Shelf, Texas Shelf, Mexican Shelf,
the Cuban Shelf, and the open Gulf, with a surface area of 1.6 million km?, as shown in Figure 1.1.
Each of these regions is dominated by different oceanic processes. The WFS is a broad carbonate-
based shelf with gentle slope. It is mainly controlled by the coastal currents with little freshwater
inputs. The offshore area of the WFS is also affected by the Loop current. The Louisiana Shelf is
the most dynamic region of the GOM, with larger amounts of freshwater discharges from the
Mississippi-Atchafalaya River system (MARS). Texas Shelf is very narrow and usually receives
lots of freshwater from the MARS during spring. Mexican Shelf is also broad which is
characterized by the coastal upwelling along the carbonate Campeche Bank. The Cuban shelf is
narrow and is mainly affected by the Loop Current in the Florida Strait. The open Gulf is the

mainly controlled by the Loop Current, and mesoscale eddies.

The GOM is a very productive marine ecosystem (estimated at 150-300 g C m™ yr?;

Heileman and Rabalais, 2008) and an important global reservoir of biodiversity and biomass of
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fish, sea birds, and marine mammals (Widdicombe and Spicer, 2008; Xue et al., 2013), thus, it is
important to quantify the role of the GOM in modulating CO> flux and ocean acidification through

estimating surface pCO..
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Figure 1.1: Study region of the Gulf of Mexico. The Gulf of Mexico encompasses the West Florida
Shelf (WFS), Louisiana Shelf (LA), Texas Shelf (TX), Mexican Shelf (MX), Cuban Shelf, and the

open Gulf.

In previous studies, contradictory results about the air-sea CO; flux in the GOM were
obtained. For instance, based on field measurements, Takahashi et al. (2009) estimated the GOM
to be a CO2 source (COz flux = 0.21 mol C/m?/year). On the other hand, Xue et al. (2014) estimated
the GOM to be a CO; sink (CO2 flux = -0.84 mol C/m?/year) using a 3-dimentional numerical
model. Benway and Coble (2014) also concluded that the GOM is a CO; sink but with a smaller

flux (CO2 flux = -0.19 mol C/m?/year). These discrepancies resulting from these studies show that
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www.manharaa.com




new methods need to be developed to better quantify the air-sea CO- flux and understand carbon
cycling and ocean acidification in the GOM. Synoptic and frequent mapping of surface pCO: from

satellites should play an important role in developing new methods.

In the northern GOM near the MARS, Lohrenz and Cai (2006) and Lohrenz et al. (2010;
2018) developed empirical pCO2 models using satellite-derived SST, SSS and Chl. However, due
to the complexities and dynamics of the northern GOM waters, these models all showed relatively
large errors (i.e., RMSE > 30 patm). Such errors would introduce large uncertainties in the
quantification of air-sea CO> flux. Thus, model improvements are needed. In other GOM waters,

uncertainties are greater because there are no satellite pCO2 models or data products available.

4. Objectives

The overarching goals of this research are to advance satellite remote sensing technology
by developing surface pCO2 models and data products for most of the GOM waters, and to improve
our understanding of the mechanisms and dominant factors in controlling surface pCO,. Towards

these goals, the specific research objectives are:

1) Develop satellite-based surface pCO2 models and data products for single-process
dominated subregions of the GOM, and quantify the sensitivities of the pCO algorithms

to the input environmental variables.

2) Quantify the oceanic processes in controlling surface pCO- in the GOM, analyze the
relationships between environmental variables and surface pCO2, and understand the
mechanisms of seasonal and interannual variations of surface pCO and its driving

factors.
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3) Develop an improved SSS model and data products for most GOM waters, and quantify

the sensitivities of the SSS model to the input variables.

4) Develop a unified pCO2 model and data products for the GOM waters, and quantify the

sensitivities of the pCO2 model to the input environmental variables.

5) Quantify the temperature and non-temperature effects on surface pCO; at different
latitudes, analyze the dominant controls and the corresponding the driving factors of

surface pCOs..

5. Data sources

5.1. Field data

In the years between 2002 and 2017, over 220 cruise surveys have been conducted to
collect flow-through surface pCO> data during different seasons in the GOM as well as one buoy
time series data from the Coastal Mississippi Buoy. Most of these pCO> data were obtained from

the NOAA National Centers for Environmental Information (NCEI)

(https://www.nodc.noaa.gov/ocads/), and several cruise data were obtained from University of
Columbia, Texas A andM University, and University of Delaware. All these surface pCO. data
sources were compiled and quality controlled for the development of surface pCO2 remote sensing
algorithms in this research. Details of these data can be found in Appendixes of A, B, and D. It
should be clarified that data collected before July 2002 were not used mainly because there is no

MODIS data available for that period.

In addition to surface pCO», SSS was also measured and collected in all the field surveys

mentioned above. To develop the SSS remote sensing algorithm for the GOM, the SSS data
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collected from these field surveys was compiled and quality controlled. Other cruises that
measured SSS but not surface pCO> were also used. Specifically, ship-based cruise data collected
in the GOM by College of Marine Science University of South Florida, Florida Fish and Wildlife
Conservation Commission (FWC), and buoy-based time series data collected in the GOM from
NOAA National Data Buoy Center (NDBC) buoys were also compiled and quality controlled, and
merged with the SSS datasets from the pCO> data surveys. Details of these data can be found in

Appendix C.

To analyze the driving mechanisms of surface pCO. in different coastal ocean
environments, in situ surface pCO time series data collected from buoys located at different
latitudes along the coasts of U. S. and its territories were compiled and quality controlled. These

data were obtained from the NOAA NCEI. Details of these can be found in Appendix E.

5.2. Satellite data

NASA standard daily Level-2 data products (version R2014.0) for the period of Jul. 2002
— Dec. 2017 with a spatial resolution of ~1 km were downloaded from the NASA Goddard Space

Flight Center (GSFC) (https://oceancolor.gsfc.nasa.qgov/). These Level-2 data products were

derived from measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) on
the Aqua satellite, and they included Chl, SST, and spectral remote sensing reflectance (Rrs, sr?)
in 7 bands between 412 and 678 nm. The spectral Rrs data were used to calculate Kq using the
semi-analytical algorithm developed by Lee et al. (2005). The MODIS-derived environmental
variables including Chl, Kq, SST, and SSS were used as inputs for the development of pCO. remote
sensing algorithms. The spectral Rrs data and SST were used to develop the SSS remote sensing

algorithm.
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6. Approach and dissertation structure

This dissertation is arranged in chapters that detail the research conducted to fulfill these
objectives. Chapters 2 and 3 focus on the estimation of surface pCO, from MODIS in single-
process dominated regions of the GOM: the WFS and the northern GOM, respectively (Objective
1). For the WFS, a multi-variate nonlinear regression (MNR) model is developed to estimate
surface pCO, from MODIS, and in the northern GOM, a previously developed mechanistic semi-
analytical algorithm (MeSAA) is evaluated and locally-tuned, and compared with the performance
of regression-based models. For both regions, the sensitivity of the developed pCO. models to the
input environmental variables and their relationships are analyzed. The MeSAA model is
developed through quantifying different oceanic processes that affect surface pCO> variations
(Objective 2). The driving mechanisms of the seasonal and interannual variations of surface pCO>

on the WFS are analyzed (Objective 2).

The satellite mapping of surface pCO2 in the northern GOM waters requires the
development of SSS data products from ocean color remote sensing (Objective 3). This work is
completed using MODIS and SeaWiFS data, as described in Chapter 4. Briefly, a multilayer
perceptron neural network (MPNN) is developed to estimate SSS from satellite-derived SST and
remote sensing reflectance (Rrs(A), m™) in the visible bands. The sensitivity of the model to

realistic model input errors is analyzed and quantified.

Most of the published satellite-based pCO> models are developed for single-process
dominated oceanic regions, as described in Chapters 2 and 3. The availability of SSS data products
from remote sensing in the GOM (Chapter 4) makes it possible to test the feasibility of developing
a unified pCO2 model for the multi-process dominated GOM (Objective 4). Chapter 5 details the
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development of such a unified pCO, model for the GOM, which proves the possibility of using
the proposed approach for other oceanic regions (e.g., Gulf of Maine). The seasonal and
interannual variability of surface pCO. in the GOM, and the relationships between pCO> and
environmental variables, as well as the underlying driving mechanisms, are also analyzed in

Chapter 5 (Objective 2).

Chapter 6 details the decomposition of the effects of temperature and non-temperature on
surface pCO; variations, based on buoy time series data at different latitudes in both open oceans
and coastal oceans (Objective 5). The underlying driving mechanisms of the seasonal variations
of surface pCO> as well as their temperature and non-temperature components are analyzed, where

the relationships between surface pCO> and environmental variables are also quantified.

Finally, Chapter 7 summarizes the works and findings in the previous chapters, with
particular focus on the implications of the dissertation as a whole. Overall implications are
presented on both the successes and lessons learned from this work. Furthermore, Chapter 7 also
discusses future research directions to broaden the findings of this work and to study CO; flux,

carbon cycling, and ocean acidification using satellite data.
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CHAPTER 2:

ESTIMATING SURFACE PCO2 IN SINGLE-PROCESS DOMINATED REGION FROM

SATELLITES: THE WEST FLORIDA SHELF

Note to Reader

This chapter have been previously published in Continental Shelf Research, 2016, 128: 10-

25, and have been reproduced with permission from Elsevier Publishing.
1. Research overview
Appendix A — Remote estimation of surface pCOz on the West Florida Shelf (Chen et al., 2016)

As one of the broadest continental shelves of the U. S., the West Florida Shelf (WFS)
should play a big role in modulating CO: flux in the Gulf of Mexico (GOM). However,
despite significant efforts to collect surface pCO2 data through numerous ship surveys,
synoptic mapping of surface pCO> from satellites is available for the WFS. In this study, a
multi-variable empirical surface pCO, model was firstly developed for satellite mapping
of surface pCO; over the WFS, with a Root Mean Square Error (RMSE) of < 12 patm and
a R? of 0.88 for pCO; ranging from 300 to 550 patm (N = 1,516). This model was based
on concurrent MODIS estimates of surface chlorophyll concentrations, diffuse light
attenuation at 490 nm, and sea surface temperature. The first spatial and temporal estimate
of distributions of surface pCO, on the WFS were investigated and discussed in this study.

However, while the general approach of empirical regression may work for waters in other
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areas of the GOM, model coefficients will most likely need to be empirically determined

in a similar fashion.
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CHAPTER 3:
ESTIMATING SURFACE PCO:2 IN SINGLE-PROCESS DOMINATED REGION FROM

SATELLITES: THE NORTHERN GOM

Note to Reader

This chapter have been previously published in Continental Shelf Research, 2017, 151: 94-

110, and have been reproduced with permission from Elsevier Publishing.
1. Research overview

Appendix B — Estimating surface pCO; in the northern Gulf of Mexico: Which remote sensing

model to use? (Chen et al., 2017a)

Various approaches and models have been proposed to remotely estimate surface pCO: in
the ocean, with variable performance as they were designed for different environments.
Among these, a recently developed mechanistic semi-analytical approach (MeSAA) has
shown an advantage for its explicit inclusion of physical and biological forcing in the
model, yet its general applicability is unknown. Here, with extensive in situ measurements
of surface pCO., the MeSAA was tested in the northern GOM where river plumes dominate
the coastal water’s biogeochemical properties during summer. Specifically, the MeSAA-
predicted surface pCO. was estimated by combining the dominating effects of
thermodynamics, river-ocean mixing and biological activities on the surface pCO.. The
RMSE (root mean square error) was 22.94 patm (5.91 %) and R? was 0.25 for pCO;

ranging between 316 and 452 patm (N=676). A locally-tuned MeSAA and regression
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models showed a RMSE of 12.36 patm (3.14 %) and 10.66 patm (2.68%), and R? of 0.78
and 0.84, respectively. These results suggest that the locally-tuned MeSAA worked better
in the river-dominated northern GOM than the original MeSAA, with slightly worse
statistics but more meaningful physical and biogeochemical interpretations than the
empirical regression model. Because data from abnormal upwelling are not used to train
the models, the models are not applicable for waters with strong upwelling, yet the

empirical regression approach has the potential to be further tuned to adapt to such cases.
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CHAPTER 4:

REMOTE ESTIMATION OF SEA SURFACE SALINITY IN THE GOM

Note to Reader

This chapter have been previously published in Remote Sensing of Environment, 2017, 201.:

115-132, and have been reproduced with permission from Elsevier Publishing.

1. Research overview

SSSis an important input to pCO2 remote sensing models, but currently there is no satellite-
based SSS data product covering coastal waters with 1-km resolution. Therefore, an important step
in developing pCO2 models is developing a model to estimate SSS from ocean color measurements.

This work is presented in Appendix C below.

Appendix C — Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean

color measurements (Chen and Hu, 2017b)

Sea surface salinity (SSS) is an important parameter to characterize physical and
biogeochemical processes, and it is also an important parameter to quantify the surface
pCO; variation especially in the river-dominated regions, yet its remote estimation in
coastal waters has been difficult because satellite sensors designed to “measure” SSS lack
sufficient resolution, and higher-resolution ocean color measurements suffer from optical
and biogeochemical complexity when used to estimate SSS. In the northern Gulf of Mexico
(GOM), this challenge is addressed through modeling, validation, and extensive tests in

contrasting environments. Specifically, using extensive SSS datasets collected by many
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groups spanning > 10 years and MODIS (Moderate Resolution Imaging Spectroradiometer)
and SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) estimated remote sensing
reflectance (Rrs(}), m™) at 412, 443, 488 (490), 555, and 667 (670) nm and sea surface
temperature (SST), a multilayer perceptron neural network-based (MPNN) SSS model has
been developed and validated with a spatial resolution of ~1km. The model showed an
overall performance of root mean square error (RMSE) = 1.2, with coefficient of
determination (R?) = 0.86, mean bias (MB) = 0.0, and mean ratio (MR) = 1.0 for SSS
ranging between ~1 and ~37 (N=3640). The model was thoroughly evaluated under
different scenarios with reasonable performance. The sensitivity of the model to realistic
model input errors from satellite-derived SST and Rrs was also thoroughly examined, with
uncertainties in the model-derived SSS being always < 1 for SSS > 30. The extensive
validation, evaluation, and sensitivity test all indicated the robustness of the MPNN model
in estimating SSS in most, if not all, coastal waters and offshore plumes in the northern
GOM. Thus, the model provided a basis for generating near real-time 1-km resolution SSS
maps from satellite measurements. However, the model showed limitations when applied
to regions with known algal blooms or upwelling as they both led to low Rrs in the blue

bands that may be falsely recognized as caused by low SSS.
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CHAPTER 5:
A UNIFIED APPROACH TO ESTIMATE SURFACE OCEAN PCO2 FROM

SATELLITE MEASUREMENTS

1. Research overview

With all satellite-derived variables (SST, SSS, Chl, Kg) available as the model inputs, this
chapter details the effort in using these variables to develop a unified approach to estimated pCO:

in multi-process dominated regions. The steps and results are all presented in Appendix D below.

Appendix D — A machine learning approach to estimate surface ocean pCO. from satellite

measurements (Chen et al., submitted)

Surface ocean pCO: is a critical parameter in the quantification of air-sea CO> flux, which
further plays an important role in quantifying the global carbon budget and understanding
ocean acidification. Yet, to date there is no unified approach, let alone unified model, to
remotely estimate surface pCO> in oceanic regions that are dominated by different oceanic
processes. In the study area of the Gulf of Mexico (GOM), this challenge is addressed
through the evaluation of different approaches, including multi-linear regression (MLR),
multi-nonlinear regression (MNR), principle component regression (PCR), decision tree,
supporting vector machines (SVMs), multilayer perceptron neural network (MPNN), and
random forest based regression ensemble (RFRE). After modeling, validation, and
extensive tests under different scenarios, the RFRE model performed the best. The RFRE

model showed an overall performance of a root mean square error (RMSE) of 9.1 patm,
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with R? of 0.95, a unbiased percentage difference (UPD) of 0.07%, and a mean ratio
difference (MRD) of 0.12% for pCO> ranging between 145 and 550 patm. The model,
with its original parameterization, has been tested with independent datasets collected over
the entire GOM, with satisfactory performance in each case. The sensitivity of the RFRE-
based pCO2 model to input errors of each environmental variable was also thoroughly
examined. The extensive validation, evaluation, and sensitivity analysis indicate the
robustness of the RFRE model in estimating surface pCO> in most, if not all, GOM waters.
The RFRE model approach was applied to the Gulf of Maine (a contrasting oceanic region
to GOM), with local model training. The results showed significant improvement over
other models for that area, suggesting that the RFRE may serve as a robust approach for

other regions once sufficient field-measured pCO- data are available for model training.

While most results are presented in a submitted manuscript, further analysis of surface
pCO; climatology and the pCO2 model sensitivity to input variables (i.e., SST, SSS, Chl, and Kq)

is presented below.

Specifically, the monthly pCO> maps derived from MODIS between July 2002 and
December 2017 were averaged to derive the climatological pCO2. monthly mean. Meanwhile, the
standard deviations of the monthly surface pCO2, as well as the monthly maxima and minima of
surface pCO- over the study period were also quantified to express the variations of surface pCO-
in each month. Figs. 5.1-5.5 are the monthly mean, monthly mean with two standard deviation
added, monthly mean with two standard deviations subtracted, monthly maxima, and monthly
minima, of surface pCO: in the GOM, respectively. These monthly surface pCO. maps should

represent the typical variation range of surface pCO2 in each month, and thus can be used as
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references during the field surveys of surface pCO2 in the GOM in the future. It should be noted
that, there is some patchiness in the monthly mean pCO> maps; specifically where two standard
deviation are added (Fig. 5.2), where two standard deviations are subtracted (Fig. 5.3), and
monthly maxima (Fig. 5.4) and minima (Fig. 5.5). These extreme high (or low) pCO: values are
mainly caused by the large variations of the monthly surface pCO. from year to year in those

regions.

pCO; (patm)
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Figure 5.1: Surface pCO. climatology in the GOM: monthly mean. They are based on MODIS-

derived surface pCO2 between July 2002 and December 2017.
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Figure 5.2: Surface pCO> climatology in the GOM: monthly mean minus two standard deviations.

They are based on MODIS-derived surface pCO2 between July 2002 and December 2017.
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Figure 5.3: Surface pCO> climatology in the GOM: monthly mean plus two standard deviations.

They are based on MODIS-derived surface pCO2 between July 2002 and December 2017.
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Figure 5.4: Surface pCO- climatology in the GOM: monthly minima. They are based on

MODIS-derived surface pCO2 between July 2002 and December 2017.
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Figure 5.5: Surface pCO- climatology in the GOM: monthly maxima. They are based on

MODIS-derived surface pCO2 between July 2002 and December 2017.

In the manuscript, the sensitivity of the pCO> remote sensing algorithm to the input
variables was quantified based on the training dataset used to develop the algorithm. This
sensitivity analysis was conducted by varying one of the input variables by a certain amount while
keeping the other variables unchanged (see Appendix D). Here | did a 3-dimensional (3D)
sensitivity analysis via data simulation. For example, to examine the model sensitivity to both SST

and SSS, a 2-dimensional (2D) arrays for both SST and SSS were generated by varying SST and
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SSS within a typical range of each input (i.e., SST within 0~35 °C, and SSS within 0~40); thus,
each value of SST corresponds to different SSS values in the SSS range, and each pair of SST and
SSS values was referred to as a grid cell. Futrther, each grid cell was assigned fixed Chl and Kg
values (e.g., Chl = 1.0 mg m3, Kd = 0.1 m™?). A data matrix was generated, and each grid cell of
the data matrix represented a data sample associated with SST, SSS, Chl, and Kq. Finally, the
developed pCO2 model was applied to this data matrix to calculate the surface pCO> value for each
grid cell. Following the above steps, Fig. 5.6-5.12 are the 3D plots of the sensitivity of the
developed pCO2 model to environmental variable pairs of Chl and Kg, Chl and SSS, Chl and SST,
Kq and SSS, Kqg and SST, SST and SSS, respectively. These 3D plots allow the visualization of
model-predicted pCO: varied against any other two of the four environmental variables (i.e., SST,
SSS, Chl, and Kg). Similar to the sensitivity analysis in Appendix D, the pCO; algorithm is more
sensitive to SST and SSS than to Chl and Kgq. Surface pCO- showed large increase with an increase
in SST and SSS, while the changes in surface pCO», in response to Chl and Kgy variations, were

gradual with smaller amplitudes.
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Figure 5.6: Sensitivity of the pCO> remote sensing algorithm to Chl and Kq. SST and SSS are

fixed with a certain value.
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Figure 5.8: Sensitivity of the pCO> remote sensing algorithm to Chl and SST.
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Figure 5.9: Sensitivity of the pCO. remote sensing algorithm to Kq and SSS. Chl and SST are

fixed with a certain value.
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CHAPTER 6:
DOMINANT CONTROLS OF SURFACE OCEAN PCO2 IN COASTAL OCEANS:
ANALYSIS OF IN SITU TIME SERIES DATA

1. Research overview

Appendix E — Dominant controls of surface water pCO; in different coastal environments (Chen

and Hu, prepared)

Atmospheric pCO. has increased continuously since global industrialization. Satellite
measurements allow for synoptic estimation of surface ocean pCO2, which can be further
used to quantify air-sea CO, flux and to understand ocean acidification under
anthropogenic forcing. To improve the accuracy of satellite-derived surface pCOg, the
dominant controls of surface pCO. over seasonal and interannual time scales need to be
better understood. As such, a time series of in situ pCO. data, together with other
environmental variables from field or satellite measurements along the U. S coasts at
different latitudes, are analyzed. On seasonal time scales, surface pCO; tends to be
dominated by the temperature effect (pCO2_T) through SST and wind speed (with
exceptions in river-dominated, upwelling-dominated, or coral reef dominated regions) in
tropical and subtropical oceanic waters, but by the non-temperature effect (pCO2_nonT) in
subpolar regions. At high latitudes, despite the covariations between pCO2_nonT and
atmospheric pCO2 on seasonal scales, no statistically significant correlation is found
between the two or between pCO2_nonT and the environmental proxies of ocean mixing

and biological activities. On interannual time scales, corresponding to the significant
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increasing trends in atmospheric pCO: over the study period, surface pCO. also shows
significant increasing trends (again with exceptions in river-dominated, upwelling-
dominated, or coral reef dominated regions). In contrast to the dominant controls of the
seasonal variations, interannual variability of surface pCO. is mainly controlled by the non-
temperature effect (through air-sea CO2 exchange via atmospheric pCOz2) in tropical and
subtropical waters but by temperature effect (warming effect of SST) in subpolar regions.
In river-dominated and upwelling-dominated coastal ocean systems where biological
activities are expected to be intensive, surprisingly, no significant correlation is found
between pCO2_nonT and biological proxies (i.e., Chlorophyll concentration (Chl), diffuse
attenuation coefficient of downwelling irradiance (Kg)). This may be mainly attributed to
the data scarcities and large uncertainties in the satellite-derived Chl and Kg, and more
importantly to the complexities of the dynamic physical and biogeochemical processes in
such coastal environments. Therefore, the effects of biological activities (e.g., algal blooms)

need to be further investigated.
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CHAPTER7:

RESEARCH IMPACTS AND CONCLUSIONS

1. Summary of findings

Due to the dynamic and complex physical and biogeochemical processes in coastal
oceans, large uncertainties (i.e., Root Mean Square Error (RMSE) > 20patm) exist in satellite-
derived surface pCO2 (e.g., Lohrenz et al., 2010; 2018; Hales et al., 2012; Signorini et al., 2013;
Bai et al., 2015). Most of the published satellite-based pCO2 models are region specific and thus
having poor applicability in other regions. In the Gulf of Mexico (GOM), no satellite-based pCO>
models or data products are available except for a few preliminary attempts in the northern GOM
waters around the Mississippi river delta (Lohrenz and Cai, 2006; Lohrenz et al., 2010; 2018),
yet these attempts all show relatively large uncertainties (i.e., RMSE > 30 patm). Here, an
empirical surface pCO> remote sensing algorithm, based on multi-variate nonlinear regression
(MNR), was developed for the West Florida Shelf (WFS) with RMSE of 10.98 patm and R? of
0.86 for pCO2 between 300 and 550 patm. (Chen et al., 2016). For the northern GOM waters, a
mechanistic semi-analytical approach (MeSAA) was attempted and the same MNR approach
used for the WFS was also locally tuned for this region (Chen et al., 2017a). The MNR shows
better performance with RMSE of 10.66 patm and R? of 0.84 than the best MeSAA results
(RMSE = 12.36 patm, and R? = 0.78) for pCO2 range of 315~450 patm. Clearly studies of both
the WFS and the northern GOM show greatly reduced errors when compared to the published
studies. It should be clarified that, while a multi-variate nonlinear regression model was

developed from this work, the MeSAA model was adapted from a previously published work
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(Bai et al., 2015) but tuned using local parameterization. While they both appear to be able to
estimate surface pCO> using satellite measurements, their advantages and disadvantages are
discussed in Chen et al. (2017a). Specifically, while the MeSAA model can address the individual
processes more explicitly, it also leads to higher uncertainties than the empirical model. On the
other hand, because the complex and often unknown processes may be implicitly included in the
model coefficients, empirical models often lead to lower uncertainties than MeSAA models, but
at the price of being unable to explain the processes explicitly. One limitation of both models is
their requirement of SSS as the model input (Chen et al., 2017a), where SSS at 1-km resolution

is not readily available from satellite measurements.

To overcome this difficulty, a multilayer perceptron neural network (MPNN) is
developed to estimate SSS from MODIS and SeaWiFS (Chen et al., 2017b). This SSS model is
mainly based on the optical properties of the colored dissolved organic matter (CDOM) and its
relationship with SSS (Vodacek et al., 1997; Hu et al., 2003; Coble et al., 2004; Del Vecchio and
Blough, 2004). However, the CDOM characteristics depend on individual rivers, and the CDOM-
SSS relationship also varies with space and time (Chen, 1999; Hu et al., 2003; Del Vecchio and
Blough, 2004; Bowers and Brett, 2008; Bai et al., 2013; Geiger et al., 2013). To overcome these
difficulties, the MPNN model developed in Chen et al. (2017b) bypasses the need of CDOM as
an intermediate step, but estimates SSS directly from satellite-derived SST and remote sensing
reflectance (Rrs(}), m™) in the visible bands. This model shows a RMSE of 1.2 PSU and R? of
0.86 for a wide range of SSS (i.e., 1~37) with uncertainties always < 1 PSU for SSS > 30, and
therefore is being able to generate SSS data products at 1-km resolution to be used in surface

pCO2 models.
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Most of the published satellite-based pCO2 models (e.g., Hales et al., 2012; Signorini et
al., 2013), as well as the models described in Chapters 2 and 3, are developed for single-process
dominated regions. These regional pCO2 models are developed using various approaches and
different combinations of environmental variables. With the available SSS data products from
ocean color remote sensing in the GOM (Chapter 4), the feasibility of developing a unified pCO>
model for multi-process dominated regions ( GOM, Gulf of Maine) is demonstrated (Chapter 5).
Such a pCO2 model leads to spatial and temporal (e.g., seasonal and interannual) distribution
patterns of surface pCO2 in the GOM that can be interpreted as being driven by different physical
and biological processes. This unified satellite pCO2 model has a RMSE of 9.1 patm and R? of

0.95 for pCO> between 145 and 550 patm.

Finally, to improve the accuracy of satellite mapping of surface pCO: in the complex
coastal waters, the mechanisms and dominant controls of the variations in surface pCO. on
seasonal and interannual time scales are further investigated using in situ time series data along
the coasts of U. S. and its territories (Chapter 6). It is found that, in tropical and subtropical
coastal waters, the seasonal variations of surface pCO; are mainly controlled by SST (with a few
exceptions in the river-dominated, upwelling-dominated, and coral-reef-dominated systems),
while in the subpolar or high latitude regions, the seasonal variations of surface pCO> are mainly
dominated by non-temperature effects. In contrast, on interannual time scale, with the increase
of the atmospheric pCO2, surface pCO- also shows increasing trends over most of the sites
selected for this study. In the tropical and subtropical coastal waters, the increasing trends in
surface pCO. are mainly attributed to non-temperature effect, while in the subpolar or high
latitude regions, they are mainly caused by the effect of SST. More biological data are required

to better understand the biological effects on surface pCO> variations.
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2. Research implications

2.1. Satellite mapping of surface pCO:2

In principle, surface ocean pCO: is mainly controlled by four oceanic processes:
thermodynamics, ocean mixing, air-sea CO exchange, and biological activities (Fennel et al.,
2008; lkawa et al., 2013; Xue et al., 2016). Therefore, any environmental variables related to
these processes can be used to remotely estimate surface pCOs.. In practice, SST, SSS, Chl and
Kq are determined to be the best variables to model surface pCO; in the GOM. The selection of
these variables (except Kq) concurs with many of the published studies (e.g., Lohrenz and Cai,
2006; Lohrenz et al., 2010; 2018; Hales et al., 2012; Signorini et al., 2013; Bai et al., 2015). In
this study, Kg is found to be an important biological proxy. More importantly, although the GOM
encompasses several sub-regions that are dominated by distinct and complex physical and
biogeochemical processes (Figure 1.1), SST, SSS, Chl and Ky are found to be the common
environmental variables in affecting surface pCO2 over the GOM. However, it is known that, in
addition to these variables, other variables (e.g., mixed layer depth and wind speed) can also
affect surface pCO- (e.g., Jamet et al., 2007; Salisbury et al., 2008; Chierici et al. 2009; Shadwick
et al., 2010; Nakaoka et al., 2013; Parard et al., 2014). Therefore, in order to apply the developed
pCO2 model on a global scale, further investigations need to be conducted to examine the
sufficiency of these four environmental variables (SST, SSS, Chl, and Kg) in estimating surface
pCOz>. The significantly improved model performance from this effort suggest that many of the

published pCO2 models may need to be revisited.

Due to the dynamic and complex characteristics of the coastal oceans and prior to this
work, the satellite estimated pCO. always showed relatively large uncertainties (e.g., RMSE >
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20 patm, or RMSE > 30 patm in river-dominated regions). Furthermore, due to the lack of
sufficient surface pCO> data, contradictory results about the air-sea CO> flux in the GOM have
also been reported (Takahashi et al., 2009; Xue et al., 2014; Benway and Coble, 2014). In this
dissertation, the considerable gaps of available synoptic pCO> data in the GOM are filled through
extensive algorithm development effort. Various approaches, such as multi-nonlinear regression,
principle component analysis and regression, neural network, supporting vector machines,
regression tree, and random forest, are all thoroughly tested and compared toward an improved
accuracy (e.g., RMSE < 10 patm) in the satellite-derived pCO.. With the synoptic surface pCO>
at relatively high spatial and temporal resolutions available from satellites, it is now
straightforward to calculate air-sea CO flux in future works. This will lead to an improved
understanding of the carbon budget and carbon cycling in the GOM. More importantly, the
unified pCO2 approach demonstrated here shows potentials for other regions (e.g., Gulf of Maine),

and thus may greatly facilitate carbon-flux studies in other region.

Finally, with rapidly increasing atmospheric pCO> resulting from anthropogenic forcing,
it is expected that surface pCO, would also show a similar or detectable increasing rate
(Takahashi et al., 2009; 2014). However, no such clear trends are observed in either the satellite-
derived pCO: for the GOM or in situ time series of pCO data in the northern GOM (e.qg., buoy
C3 in Chapter 6). In other words, based on the results presented in this study, currently it is
difficult to conclude whether there is a significantly increasing trend in the surface pCO: in the
GOM, despite the fact that the satellite-based surface pCO2 does show slight increases after 2012.
This is possibly due to 1) the buoy-based time series data may not be representative of the entire
GOM, especially for the open GOM waters, and 2) if the model inputs (SST, SSS, Chl, and Kg)

do not show apparent trend, the modeled pCO2 would not show any trend either. Therefore, in
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future studies of surface pCOo, in order to capture the response of surface pCO: to the increased

atmospheric pCOz on interannual time scale, the latter should be used as the model input as well.

2.2. Further implications

The SSS work presented in this dissertation has implications beyond its use in satellite
mapping of surface pCO.. Accurate estimation of SSS from ocean color remote sensing is critical
to characterizing many physical and biogeochemical processes in coastal ocean waters (Fennel
et al., 2011; Xue et al., 2013). It can not only be used to examine the mixing characteristics
between different water masses (e.g., riverine freshwater versus oceanic water) (Hu et al., 2004;
Horner-Devine et al., 2015; Yang et al., 2015), but it can also be used to trace the pathways of
the terrestrial runoffs into the ocean as well as to characterize the optical properties of the ocean
waters related to hypoxia and algal blooms (Rabalais et al., 1996; 2002; Weisberg et al., 2014;
2016; Le et al., 2016). The SSS algorithm developed here (Chen et al., 2017b) may also be
implemented within near-real time applications in monitoring water properties in the near future.
Likewise, the general approach of using neural network to implicitly address relationships
between spectral reflectance and SSS may be applied to other coastal regions to derive SSS from

ocean color measurements.

Similar to the neural network approach used on SSS estimation, the approaches proposed
in this dissertation to estimate surface pCO- may be extended to other regions as well. Although
the relative importance of the four processes (thermodynamics, physical ocean mixing, biological
activities, air-sea CO> exchange) that control the variations of surface pCO, may vary in different
oceanic ecosystems (e.g., upwelling-dominated, river-dominated, or current-dominated), for

example at different latitudes, the proposed machine learning approach used to generate the pCO-
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model for the multi-process dominated GOM waters shows great potential for estimating surface
pCO> from other oceanic waters (Chapter 5, Chen et al., submitted). At present, due to the lack
of synoptic and accurate mapping of surface pCO: in coastal margins, it is still difficult to
quantify the role of coastal oceans in cycling atmospheric CO> as either a source or a sink (e.g.,
Borges, 2005; Cai et al., 2006). As such, the proposed approach in this dissertation can be
implemented and tested on global continental margins as well as in global open-ocean waters to

improve our knowledge of global oceanic carbon cycling.

3. Future work

3.1. Research

In the past, controversial results have been reported on whether the GOM acts as a CO»
source or sink (Takahashi et al., 2009; Xue et al., 2014; Benway and Coble, 2014). Based on the
synoptic and long-term satellite-based pCO- data products provided in this work, an important
next step is to estimate the air-sea CO; flux in the GOM waters. Subsequently, the variations of
the air-sea CO> fluxes in the past years (e.g., at least > 15 years from MODIS) can be analyzed

towards a better understanding of the carbon cycling in the GOM.

With the increases of atmospheric pCO- resulting from anthropogenic forcing, how the
ocean responds to such increases is one of the top concerns in marine carbonate studies (e.g.,
Doney et al., 2009). Therefore, future works on pCOz remote sensing must improve the model
capacity in capturing interannual variations surface pCO: in response to changes in atmospheric
pCOs.. In particular, based on the in situ time series data, surface pCO. shows clear increasing
trends in most of the study sites along the U. S. However, based on the remotely sensed pCO>
from this work, surface pCO. trends in the GOM are less conclusive. Considering the dynamic
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and complex oceanic processes in the GOM, it could be possible that surface pCO- did not
increase much over this study period; it could also be possible that the interannual changes in
surface pCO> were not captured well by the environmental variables used in the developed pCO>
models. As such, further investigation and improvement of the developed pCO> models are

needed, possibly through the use of the atmospheric pCO- as one of the input variables.

Finally, to better quantify surface pCO. from satellite measurements, the biological
effects on surface pCO2 must be to be investigated in greater detail in the future. At present, Chl
and Kq are used as general proxies of the biological activities in modulating surface pCO..
However, due to the complex processes of the biological activities (e.g., photosynthesis,
respiration, and calcification), the signals in Chl and Kq may not co-vary with surface pCO on
the same time scales. For example, it was surprising to find that Chl and Kg are insignificant to
surface pCO2 changes (Chapter 5). Such results could be caused by data scarcities and large
uncertainties in the satellite-derived Chl and Kg, especially in coastal ocean waters. As such,
more work is still needed to study the effects of biological activities on surface pCOz. In
particular, how surface pCO: changes, together with other environmental variables (e.g.,
apparent oxygen utilization, nutrients, dissolved oxygen, and Chl), before, during, and after algal

blooms needs to be investigated.

3.2. Product delivery

Surface pCO:s: is a key parameter in assessing air-sea CO> flux and understanding ocean
acidification. While algorithms and data products are developed in this study, effective delivery
of these products to the end-users still requires more efforts, especially for a user groups of

different needs. For example, the North American Carbon Program (NACP) is a multi-agency,
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multidisciplinary scientific research program which focuses on carbon sources and sinks. The
surface pCO> data products can be provided to researchers in this program to study carbon cycles.
The NOAA Ocean Acidification Program (OAP) is dedicated to improving our understanding of
how (and how fast) the ocean chemistry is changing. The interannual variations of the surface
pCO: in different regions of the GOM (e.g., river-dominated northern GOM, WFS, and open
GOM waters), after accounting for the anthropogenic factor, can help to understand the response
of the GOM waters to anthropogenic forcing. Further, similar to the NOAA Pacific Marine
Environmental Laboratory (PMEL) moored pCO systems (Chapter 6), virtual buoy systems
(VBS) presenting surface pCO. time series at pre-selected locations of the GOM may be

developed (Hu et al., 2014) in coordination with the NOAA PMEL carbon program.

In addition to the major data products (surface pCO.) developed here, SSS estimated from
ocean color satellite measurements is also an important data product for many applications, from
water quality monitoring to ecosystem research. Currently, SSS data products have been
generated in retrospective mode, which can be shared with many research and environmental
groups. Once SSS data products are generated and updated in near real-time, these products may
be delivered to various user groups through the common web portal established at the University

of South Florida Optical Oceanography Lab (https://optics.marine.usf.edu).

4. Conclusions

Ocean color satellites provide synoptic and frequent measurements of the surface ocean to
study the changing ocean chemistry. Integrating satellite data with traditional ship- and buoy-based
measurements can provide further insights into understanding of variations of surface pCO- and

CO2 flux. Compared with previous efforts in mapping surface pCO- from satellite measurements,
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the most significant outcome of this research is its use of machine learning to establish models to
estimate SSS and surface pCO: resulting in greatly reduced uncertainties even for multi-process
dominated complex regions. The accurate surface pCO. data products enable a better
understanding of controlling mechanisms of their spatial, seasonal, and inter-annual variations.
The developed datasets of SSS and surface pCO> are expected to facilitate more studies of carbon
cycling between atmosphere and ocean, for example to better quantify the role of continental
margins as potential CO2 sources or sinks, and to better quantify the ocean’s role in absorbing

atmosphere COsx.
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1. Introduction
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However, direct field observations are ofien limited in spatial and

Atmaspheric OOy has increased by 40% since the industrialization
em (Sabine of al.. 2000, Solomon et ul., 2007), Q)mondu‘ly,

temporal coverage. While numerical models have alsp been used to
estimate surface pCO; (e&. Nue et ul, 2014; Arruda et al., 2015),

oceanic uptake of 00, has resulted in ooean acidification and d
surface water pH {by ~0.1 units) (Sun et al., 2012; Pachanr and Meyver,
2004), leading to ecological degradation and a d of mari
biodiversity (Widdicombe amml Spicer, 2008; O et al. 2005; Feely
ot ul, 2017). Due to large spatinl and temporal variations in surface
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2014; Sarmm, 2000; Borges et ol 2005; Hofmunn et al., 2011; Sarma
el al, 2012 Chen ot al, 2013, Wanninkbol ot al, J013). Accurate
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Nomenclature MODIS  Moderate Resolution Imaging Spectroradiometer
MR Mean Ratio
CDIAC  Carbon Dioxide Information Analysis Center PCA Principle Component Analysis
CHL, Chlorophyll-a Concentration PCR Principle Component Regression
GOM Gulf of Mexico RMSE  Root Mean Sguare Error
Kd_Lee Diffuse light attenuation coefficient at 490 nm §88 Sea Surface Salinity
e Loop Current SST Sea Surface Temperature
MB Mean Bias USGS  U.S. Geolagical Survey
MLR Multi-variate Linear Regression WFS West Florida Shelf
MNR Multi-variate Nonlinear Regression

With a surface area of 1.6 million km®, the GOM encompassss the
West Florida Shelf (WFS), Louisiana Shelf, Texas Sheif, Mexican Shelf,
and the opeo Gulf (Kobhiny 1 ul, 2000, Coble ot ul, 2010), As one of
the most productive areas for fisheries in the world, it is essential
habitat for numerons fish and wildlife species, and is likely to be
strongly impacted by ocean acidification {C a1, <1 ol 2011 Wanninkhaf
el 2005), Thus, it is important to quantify the role of the GOM in
modulating OO flux (Takahashi et wl., 209), Based on fickl measure-
ments, ikcabasdio ol ol G009 estimated the GOM as a CO; source with
a net flux of about 0.21 mol C/m?/year. However, with additional field
ohservations, Robbins ¢f al, (2014) reported that the GOM is a CO2
sink with a net flux near ~0.19 mol C/m?/year, Using & 3-dimensional
numerical madel, Xoe of ol (2019) estimated the GOM as a sink with a
flux of ~0,84 mol C/m*/year. Clearly, such discrepancies necessitate
additional studies to better quantify 00, flux, and synoptic mapping of
surface pCOy should play an important role. In particular, with
continuous surface pCO, collections in the GOM in recent years (see
below for data sourves), the application of satellite remote sensing can
stroagly contribute to a better understanding of surface pOO, distribu-
tions and COy flux.

Within the GOM, of particular importance s the WFS between 24—
31N and B0-85 "W (Fie 1). The WFS is & brosd carbooate-based
shelf with a width of 220-275 km and a gentle slope, influenced by the
Loap Current (LC) system as well as upwelling, river discharge, blooms
of both harmful and non-harmful algse, summer and winter storms,
and groundwater influx (rollHE el al. 2000; Wesberz and He, 2003; Hu
et il 2005; Hu ot al, 20063 Walsh e al, 2006; Beaway and Cohle

Swrfuce O, jpanmy

WN — — — — — -" 00
W W MW BOW RW nrw ww
Fig. 1. (a) Spatial b of the field 1 pC0; along the sbip tramsocts (1404

1}

2014). Although the GOM is typically characterized as being ollgo-
trophic, the WFS is one of the most productive continental shelves in
the United States, supporting numerous fisheries and diverse organ-
isms (Saul of al. 2013 Chaguris ot al, 2015). As one of the broadest
continental shelves of United States (1 and Welshorg, 20020), the WFS
may play a big role in modulating CO. flux in the GOM, and knowledge
of synoptic surface pQCO, distributions as well as their tempocal
changes can help to quantify air-sea CO. fluxes, biochemical and ocean
acidification processes. However, despite significant efforts to collect
surface pOO, data through numerons ship surveys, and one study (e
“al, 20014) to model pCO; variability on the Lovisiana Shelf and the
GOM as a whole, little information is available for the WFS,

The objectives of this study are thus two-fold: (a) development of a
remote sensing moded to scale up ship-based surface pCO, observa-
tions in order to take advantage of the more synoptic and frequent
remote sensing observations for the WFS, and (b) application of the
maodel to kong-term remote sensing data to examine spatial-temporal
distributions of surface pOO, on the WFS. The present work is directed
toward beidging knowledge gaps by providing, for the first thne,
monthly pCO, distribution maps 2t medium resolution (1-km) and

their temporal variations on the WFS.

2, Data and methods

2.1. A brief review of pOOs remate sensing

While the details of different methods to estimate surface pCO,
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23 (b) The same Held data where pesir-concuerent ( =6 B) high-quality MODES dats exist.
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from remote measurements can be found in the literature (as listed in
Tuble 1), for completeness the methods are briefly described here,

In terms of model inputs, most published works fated surface
pCOy o physical and biokogical parameters such as sea surface
temperature (SST), sea surface salinity (SSS), mixed layer depth
(MLD, m), and chlorophyll o concentration (CHL, mg m™) (e.g..
Stephens et ol 1995; Runguma et al,, NK5; Wanninkhod vt al., 2007;
Watanabe, 2007; Berryman et ul,, 2008; Zhu et al., 2009; Friedrch and
Oschlies, 2000% Holes et al. 2012; Tuo «f al,, 2002; Signorin et al
2 i el al, 2014; Bai et al, 2015, Marree vt ul, 2015; Pmbhy of al,
2035 Mawssa ¢l 3l 2016). These parameters all have the potential to
affect surface pOO,, because: 1) SST and SSS can influence the
solubility of CO; and the dissociation constants of the carbonate
system (Wesss, 1974; Lee ¢t al, 19495; Millero et al. 2006); 2) CHL
can be 3 good tracer of the influence of blological processes on surface
pC0y, as CHL Increases (eg., In algal blooms) can cawse significant
decreases in surface pOOz (Sarma ef al. 2006; Jamet ef ul, 2007;
Friedrich apd Osehilivs, 2000); and 3), MLD can be a good indicator of
wind stress and convective mixing, and as a result, carbonate propee-
ties of subsurface waters brought to surface by strong mixing are
usually diffevent from those of the surface {fonmt ot ol 2007 Chiloric
et al 2000 Signorinl et al. 2013) In some studies, Wind speed
(Shadwick ot al, 2010) and atmospheric pCOy (Lofovee nnid Tuylon
2002) were used to moded the effect of air-sen €O, flux on surface
PCOy, Parard et al, (2014) and Marree of al (2014) estimated surface
pLOy seasonal variations as n function of Julian day, and net primary
production (Perard of ol 2014) was used to describe biological effects.
Several other studies correlated surface pOO,; with latitude and long-
itude (Olscn o al., 2004; Jo et al, 2002 Marree ot al,, 2014), The work
of Sulishiury et b (2008) related surface pCO; to optical measurements
(beam attenuation at 660 nm, ¢-660, m "', pravided an indication of the
turbidity of the water column), and showed that high pCO, was
associnted with low c-660, 1t s reasanable and generally necessary to
correlate surface pCOy to the parameters mentioned above (passibly
excluding geo-locations) because it is difficult to directly describe pCO,
in more mechanistic terms (physical, biological and chemical relation-
ships).

In terms of methods and model uncertainties, both empirical
regression and neural network approaches have been used o relste
surfsce pCO; to SST, 888, CHL and MLD in the open ocean (Do ot ol

H04; Sarma et al., 2006; Jumet ¢ al, 2007; Telszewsld et b, 2009;
Nakaoka et ol 2003; Marrec f al,, 2015; |'\d]|) et ok, 2015; Mousss
ol al. 2016), Such parameterizations have provided pCO; with Root

Means Square Errors (RMSE) Jess than 17 patm. In coastal marging, in
addition to the emplrical regression and neural network approaches, a
mechanistic semi-analytical method (B0 ¢ ol 2015) was also exam-
Ined by modeling the ocean processes that control surface pC;, Unlike
emplrical models, mechanistic methods explicitly explain the physical
and blogeochemical processes that contral surface pOO; In the model.
Although the mechanistic method wss more meaningful than the
empirical regression and neural network approaches, it has generally
been effective only in reglons where river discharge was the dominant
influencing factor on pCOy (Bl of 41, 2015), The pCO; RMSE
uncertainties of these models for cogstal oceans can reach 88.6 patm
(Hales ot a1 2012), and the coefficient of determination (R*) can be as
low as 0,165 (Lobrens ot ul, 2010), Therefore, while remote estimation
of surface pOO, for the open ocean is relatively mature due to less
variable environmental conditions (mainly controlled by mescscale
ocean creelation), due to the complex dynamics of coastal regions
(e.g., including river discharge, ocean tides, coastal upwelling, ground-
water discharge and biological factors) (Richey of ol 2002 Bauer ot ol
2000, Cyromak of ol 2014), remate estimation of surface pCO; & still
challenging.

The monthly mean satellite products or dimatology used as inputs
in most published works can introduce significant uncertainties in
noalinear pOO, madels. Likewise, the sensitivity of established models
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to individual input variables has rarcly been studied. As satellite-
derived SST and CHL have inherent uncertainties {0.5-1.0 “C for SST
(Hla et al, 2009) and 12-24% for CHL in waters of > 5 m bottom depth
(Cannizzam et al,, 201 l)), em)r ptopcphon m model-derived pOO,
needs to be und osp for I waters. The develop-
menhh&epmmtnudymhmdmdnﬂynﬁelﬁudah.mdu
sensitivity analysis was conducted to d the principal factors
Mmmmlpcoxmdhwmnmhpnmmmﬂuwuthe

A et

The twenty five cruises used to obtain the underway surface water
pOO; datar used in this study are described in 70000 2 These data,
obtained between Sep. 2003 and Sep. 2012, are found at the Carbon
Dioxide Information Analysis Center (CDIAC) (htp://ediac.ornl.gov/)
and the U.S. Geological Survey (USGS). Seawater samples foe measure-
ments of pOOy, S§8 and SST were collected at 4 depth of 5 m using a
shipboard flow-through seawater system (31,137 observations of each
parameter), Full cruise tracks with color-coded surface pCO; values are
shown In Fip Lo, Surface pCO; datn were measured with either a non-
dispersive, infrared analyzer LISCOR™ (Fevly ot sl 1995 Fereun vt al,
2009} or with 8 Multiparameter Inorganic Carbon Analyzer (MICA;
Wang ot ol 2007) The LCOR™ data had an accuracy of 2 patm (or
better) with a measurement interval near 2 min, and the MICA data
had an acvuracy of 2.5 patm {or better) and a measurement interval
around 2min (Wang ot ol 2007). The details of data collection,
processing, and quality contral can be found in Feclv or ol [1998),
Ploreot ot al (2000) and Wang o1 ol (2007, Corresponding SSS and
SST data were obtained using a CTD (SBE-21 or SBE-38, Seabird Inc.,
USA, YSI 6600) integrated in the underway pOO, system.

All cruise data obtained from COIAC/SOCAT has undergone quality
control analysis. These data were converted into uniform format with
an Interactive Datn Language (TDL) program, and were visualizod and
quality Ued {i.e., by viewing data quality flags and metadata files)
to discard apparent ervors (e, individua! spikes due to instrament
malfunction or other factors). Surface pCO, that fuctusted greatly for
consecutive measurements while other variables (SST, S8S) remained
stable (e.g., part of the data collected over GUI0IS_Leg?2 and WS1202)
were assumed to be prope to measurement errars and were therefore
discarded. Less than 0.1% of the available obser were di led
via this quality control pratecol. A tedal of 31,137 pCO, observations
were sedected for model development and validation {see Section 24).

2.8, MODIS satellite data

Standard NASA Level-2 data products (version R2014.0) between
July 2002 and December 2014 were downloaded from NASA Goddard
Space Flight Center (ttp:/oovanenlon gt nnsnpny /). These Level-2
data products obtained by the Moderate Resolution Imaging
Spectroradiometer (MODIS) on the Aqua satellite included SST and
ocean color data such as CHL and spectral remote seasing reflectance
(Rrs, s¢°') in 7 spectral bands between 412 and 678 nm. The spectral
Rrs data were used to calculate the diffuse attenuation coefficient at
490 nm (Kd_Lee, m™') and the absorption coefficient of colored
dissolved organic matter at 440 nm {agag, m~') using the semi-
analytical algorithm developed by [ ot ol (2005), This algorithm
was selected because it is more accarate than empirical Kd algorithms
for the large Kd range (0.03-1,29 m ') that is typical of turbid constal
waters in the eastern GOM. Kd_Lee has an estimated uncertainty of
about 13% (Zhoo et ol 2007). Data quality flags - another Level-2
MODIS data product - were used to screen Jow-quality data, Statistics
between 2003 and 2014 showed that after discounting cloud cover, sun
glint, and other factors that affect data quality, for any given location in
the GOM there was, on average, a valid CHL (or Kd_Lee) chservation
every 5-10 days and a valid SST observation every 3-5 days (Feop ond
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Table 2
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Underway pO0; measuroments wasd in this stody. All the cruise trucks Bed Rerv e shown in (s {8, The crises markod in italics were selectod for model dovelopaen togrther with

comourrent ( & 6 bh) satolige mesvssrrmients, ax shown m o The The crutess marked in bold had =0 sahelite itx, thes wero not used for this study,
Cruise [D Ship nume” Date rangs # of alwervations
GUwor NOAA ship Gordon Guorter SO/ (M- NN 0,07 Pt
GUOSO2 Leg2 NOAA whip Gardon Guntor 2008/05/ 1:3-2008/05/14 344
DEESIHOL M/V Here Today 2008/8/11-2008/8/15 1594
GUOSS_leg2 2 NOAA ship Gorfow Ganter 2008/ 1 05 -2008/ 11712 FolR
GUGSOS_ Loy NOAA shvip Goniow Gunfer 2008/ 1 /59200811 /19 1733
(LR MY Here Yooy SO0/ 2/ 242000/ 2/ 28 o
GUONE_ kg2 NOAA dlsip Gordor Gunter 2000,/005,01 - 200003118 7
GUOSO2_ Lags NOAA ship Gordan Gunter 2000/08/ 15-2009/05/16 246
(RS MAV Hre Today 2000/8/17-2000/8/21 1504
GUOSO4_ Leg! NOAA ship Gordan Guntor 2000/09/06-2009/09/08 H83
GUONM_ L2 NOAA absip Gonlow Gander 20A09,009/ 1 72000/ 09,28 Mo
GUOWS_ Log2 NOAA alip Gorvow Ganter 200072 1 07200011 /08 553
GuUio01L2 NOAA ship Gordon Gunter 2010/04/30-2010/03/01 280
GUINGGS_Legl _DWH NOAA shép Gordow Ganter 201020/ 16-2000/10/25 e
GUINS_LegZ NOAA adeip Gordow Ganfer 2010/00/18-2010/09,28 3651
REOY0S NOAA ship Ronald Brown 2000/8/20 11
REOYO5T NOAA ship Ronald Brown 2009/09/15-2009,/09/16 150
RBO30S NOAA ship Ronald Brawn 2003/09/03 - 200:3/09 /04 152
REO306 NOAA ship Ronald Brawn 2003/09/09-2003,/09/12 486
REOG06A NOAA ship Ronald Brawn 2006/7/30 a7
REO70S NOAA ship Ronald Brown 200707/ 15-2007/07/16 196
wsines RV Wealtent Seiithy 2001 /20/Z1-2001/10/24 1280
w8202 RV Waltent Smurh 20) 2/02/28-2012)/03,02 130
WSi209 R/V Waltos Seith 2012/6/29 344
ws214 R/V Wealewt Sith 201207/ 08-2012/09/12 2054
Tuted from Wl crabses 31,137
Totsd esed in medd development and valkdation 26,734
* The ortginal data and metadata for the crulses of NOAA ship Goedon Gunter; NOAA ship Rooadd H firosn and RyV Walktoa Smith can be foand at by v ol o povioal

oy e S, These data were acquired with fending from the NOAA Climate Progrvm Office. The ongined dats and metadata for the USGS cramsess of M/V Here Today cm be found

ot ot/

Hu, 2016}

2.4. Algorithm development and validation

Although the field measurements included several key properties
(e.g., SST. SSS, and CHL) that can be used to model surface pCO;,
MODIS-derived data products for SST, CHL, a4, and Kd_Lee were
preferred for use in multi-variste regression against field-measured
pCO;. One advantage of this choice is that uncertainties in the MODIS-
derived data products will be implicitly included in the regression
coefficients. When the same data products are wed with these
voeflicients for pCO; predictions, such uncertainties will be canceled
o a large extent.

To obtaln concurrent fiedd data and MODIS data, a time window of
2 6 h was used. In order 10 assure satellite data quallty an bmage pixel
was discarded if it was associated with any one of the following quality
control flags (Burnes wndd Hi, 2015): atmospheric correction failure,
land, sun glint, high radiance, large sensor viewing angle ( > &), stray
light, cloud/ice, high solar zenith angle, Jow water-leaving radiance
{low nLw_555), questionable navigation, CHL > 64 or <0.01 mg/m ",
suspicious atmospheric correction, dark pixel (scan line ervor) and
navigation failure, Although SST is mure tolerant than ocean color data
to non-optimal observing conditions as defined in the quality flags
(Feng and Hu, 2010), for consistency these criteria were applied to SST
as well. Because the pixel size of the MODIS data used in this work is
about 1 km, the pOO, field within the pixel was averaged to match the
satellite data.

After the strict quality control and field data binning, for the period
between Apr. 2008 and Sep. 2012 1516 conjugate observations of fiekd-
mmlm'd p(X); and MODIS data products were available for algorithm

lopment and valid (Fig 1b). In this dataset, field-measured
pco. ranged between 3057 and 552.4 patm, feld-measured S$SS
ranged between 31.75 and 36.56, satellite SST ranged between 15.1
and 31.4 °C, satellite CHL ranged between 0,076 and 3.624 mg/m™,

puteases o0 These data weee scquired with fundeg from USGS Cosstal snd Marine Geology Program.,

satellite 2,440 Tanged between 0,009 and 0.185m™', and satellite
Kd_Lee ranged between 0,030 and 0,590 m ', Most of the variables
in this dataset showed normal distributions with equal variance except
for a few outhiers. This dataset was divided randomly into two groups,
with one group used for model development and coefficient tuning, and
the other for model validation.

To determine the appropriate fwms to rrhtc the dvpcndenl
variable (surface pO0,) and the indep two
were conducted. Following the principle of parsimony, a stepwise
multiple linear regression (MLR) was first conducted to examine which
independent variables (SST, §S8, CHL, Kd_Lee, a4, Julday) should
be used to predict surface pCO;. Although Julday was not n real hio-
chemical variable (more of a “tuning” p ), it was selected and
normalized sinusoidally to emphasize the | cycle of surf
pCO; (Friedrich amt Oschlies, 2009; Lefevee of al, 2005; Signovin
etal, 2000). Because CHL, Kd_Lee and a4 tend 1o be Jog-normal in
their large-scale distributions (Compbell 1995), these three variables
were sealed logarithmically In the regression model. The results are
presented in Toble O, All independent variables except CHL and
Kd_Lee could be selected with 95% confidence (p<0.05) in the final
stepwise MILR model, with RMSE of 14.83 yatm and R* of 0.75.
However, the scatterplot between predicted pCO; and field-messured
pOO, (nat shown bere, but with statistics lssted in 10b1e 2) Indicated
that the predicted pCO; tended 1o plateau at high pCOy: for pCO; >
420 patm, the mean biss (MB) and mean ratio (MR) between model-
predicted and field-measured pCO, from the stepwise MLR were
-39.336 uatm and 0916, respectively, suggesting that pCO; was
significantly underestimated for pCO; > 420 patm, thus the perfor-
manee of the MLR approach was not satisfactory and further improve-
ment was required,

Exclusion of CHL and Kd_Lee in the MLR model was consistent
with the parsimony step-wise test, even though they were used in other
studdies to model surface pCO; (see Section 1), To further examine the
reason and to investigate whether the independent variables are
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Table 3
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Statution of the srpwi Itiphe linewr ragr (MILR). With 95% comfidnnoe (p<0.05], ol variahies exoept CHL amd K4_Lee werv sedectid in the final MR mode] (p values with
CH1, or Kid_Lee sdded in the model ane marked in itabics), Clearly, the sepwise MIR sedenvetimated surface pOO; for pO0; > 420 gatm. Thenofore, this model wass not applied in this
tudy.
Moded Variable ndded  Decision to the mew-  p value  RMSE (patm)  MEB (patim) MR r*
Enputs” sdlded varishle
PCO > PCOL5420 patm  pCO, > PCO25420 patm
420 pato 420 patim
Enpets] SST In 0o 1aoe -45251 1120 09 1004 e
Enpratsd Tog] {kgeu) In oo 1516 -37.005 0ol a2l 1004 0736
Erpratsc} 388 In Qoo EasEs -30.282 a2 0916 1004 0.746
Enpeated coal Jubdiy ) In 04z 14A ~39.336 0973 0916 1004 0.748
Tt log ol CHL) Ot 0644 1478 ~30.443 0s7e 0916 1004 n.748
gt logygl¥al_Eav) Ot 0135 1475 ~3R822 a1 a7 1L00& 0740

* Inpats] =[SST); Inpeas2«[SST, kgudtamlk 10putsde] SST, logdogw), SSS1 Inpmsde] SST, lgudnaal, 5SS, costdoddiy)); InpussSe] SST, logudigenl, SSS, costieiday)

bR CHLY): Inputste{ SST, bogofagual. S5, cos(Iulilay), logudXd_Lee))

orthogonal, correlations among the Independent variables (SST, SSS,
CHL, Kd_Lee, 8,440, Julday) and dependent variable (surface pCO2)
were examined and listed In 10bie 4, With 95% confidence (p=0.05),
most of the independent variables were Inter-correlated, suggesting
that a principal component analysis (PCA) may be needed to remove
the redundant information from these varinbles (see helow).
Correlation analysis also showed high correlation between 8440 and
CHL (or Kd_Lee), and higher correlation between surface pCO; and
Agaso than between surface pCOy and CHL (or Kd_Lee). Therefore,
ONCE 8490 was explicitly included in the MLR model, CHL and Kd_Lee
were implicitly inciuded,

Considering the non-satisfactory performance of the MLR and the
high correlations among the independent variables, PCA was used to
determine the dominant, orthogonal modes that conkd be used o
construct the model. As shown in Tuble 5, the derived six principal
components (PCs) are orthogonal, und the first three PCs cun explain
> 98% of the variance in the independent variables. Thus, a principal
component regression (PCR) model was developed to predict surface
OO, using the six PCs. The RMSE and R? of the PCR were 14,69 patm
and (.75, respectively. Similar to the MLR results, the predicted pCO,
tended to plateau at high pOO, values: for pOO, > 420 patm, MB and
MR of the PCR were -38.695 patm and 0.917, respectively, indicating
model deficiency of the PCR and a necessity for further effort to
improve the model.

The non-satisfactory performance of the MLR and PCR methods
indicated that linear regressions through either the independent
varlables or the orthogonal PCs could not explain the entire vardance
of the dependent variable, and that some voo-linear forms may be
required. Therefore, the following model development and tuning were
based on multi-variate nonlinear regressbon (MNR) between fiedd-
measured pCOy and the independent variables. After extensive trial
and error, it was found that the use of MODIS-derived SST, CHL, and
Kd_Lee provided optimal results (1oble ©). Other parameters, such as
MODIS-derived a4 (often inversely relsted to SSS in coastal waters
due to conservative mixing) and field-measured 5SS, did not improve
the efficiency of the modet because of the limited model predicative

Table §
Condficionis & warh geincipal comp (PC) sl the Endvpemsd alibes, 4%
el as the p e af Mained by caeh PC.
Varisbles PCI PC2 PC3 PO PCE PO6
0906 -0066 0024 DAET D04 0004
Tog el CHIY 0L87 0063 0002 02 -008Y Q702
logy o(Kd_Lee) 023 -OMM0 QDUS D497 0642 03583
oy el #gsan) 44 -00R1 0012 0495 OT6F 0400
558 QD6S 0972 <0098 0004 0409 0015
con(Jusday) -0013 1% 0980 0038 0016 Q011
Varsnce explained 9059 6469 215 053 002 a0l
=)

capability at high pCO; (Tuble 6). The functional relationship between
fiedd-measured pCO; and the satellite data was modeled by & multi-
vartate nonlinear (quadratic polynomial) vegression, implemented in
the Interactive Data Language (IDL). The regression equation was
determined as:

D = ko + A+ b+ b 4 ke + s + dasns + bon
+ hpexs + hokrs + Kax” + ko + bl + bad

1)
where xy=S8T, Ig:fﬂg 'dxilﬂ), X_g:by ,o(CHIJ,
Xe=008{Zn{Julday-y)/365).

In the equation above, y was optimized by [teeation (ranging from 0
to 365) until the minimum RMSE was obtained.

During the model tuning phase, several different forms of Eq, (1)
were examined to determine the best form of the regression function.
These included use of field-measured 5SS or MODIS-derived ag4a0
Instead of satellite Kd_Lee, and use of original CHL or Kd_Lee instead
of logarithmic CHL or Kd_Lee The results from these alteenative
functional forms were slightly worse than those from Eqg, (1) (12000 6)
except for the combinations of S88 and CHL, &, and CHL, and 8,420
and SSS (last three rows in 1 hle ©). However, models with combina-
11005 of 840 A0d CHIL, and g4 and SSS tended to plateau for high
pCO;  waloes (>420 patm), with MB of -18303 pstm  and
~16.305 patm, and MR of 0.962 and 0,906, respectively, indicating

Table 4
Corrvdution confficients smonyg tndepends hikes and depend inblew wed i the sedocted modid i thin work, with 95% mnfidence. Coofficients with < %5% confidvnce are
marked in italios, snd the cormepondmyg p valoes are Bxted in the garentheses,
Variubles SST logs0 (CHL) bog o (Kd_Lee) 10810 (hgaan) 88§ cos (Julday) PO,
S8T 1 ~0332 -4 ~0481 0212 ~0081 0x9
log ) olCHL) -0.4852 1 0950 ez -0.942 0073 (0052) -804
logyofKd_Lee) -0.47) Q950 1 ausy ~0.514 -9 (0M12) -0,260
o8y ol gaso) 0681 a2 0858 1 -0.475 iy ~0A%
0212 ~.342 0314 ~NATS 1 0198 (NP7 (RS2}
cos{Julday ) -0.081 0TS (52} ~0.000 (0812) 0077 0158 1 ~01%4
OO, 0539 0324 0266 (438 0007 (0552} ~0.15¢ 1
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Tablo 6
Muded pexfurmance for different combe

ufingut p wing rogr
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son formulbs in Ba. |, Note that sithough the last two rows show the same [ valnes s the st row with

evvm loweer RMSE, beth send %o platesu for pOO; > 420 paten (e negatively bised MB ssd MR values), The third row froms bottom shoves stightly lower MB for 500, > 420 gartm than
e et ruw, it this row sk shows Bigher RMSE, Jowvr B2, and platiaued perfirmuecs far 00, > 480 yaten (MBe-23,804 juatms, MR=0,957). Becmse cunatly SS5 i difficult to
errve Brum satelizes for ccdtal watiey, the first row was selected as the finsl pOO; modol in this study.

Model ®* RMSE ME (jeaten) MR Relutinaship between Rusge of medeled
Faputs” (et %) 105 and in situ €O (jeatm)
PO > PCOL5420 patm pC0 > POOLSA20 jatms  pCO,
420 patos 420 patm
Ergratal 089 0SR20 -85 0561 0981 102 V=l 599K 55 1 512,5-555.0
Enpratsl’ 062 ISEE0 37922 1917 0916 1007 Vell 605K+ 147.57 312.3-516.2
Inpetx? GFT LLANLD -12260 0528 0973 L2 VoIBTIX 4R | 312.0-564.1
Erprats) o84 100004 -11550 03 0974 Loa V=(1556X+54.1 316.5-529.0
tryretsed OB4 1302734 -0087 0993 0979 Lo V=E87X44LA 310.3-562.1
Lt 086 1S4 -6251 0765 0,967 1002 Vel 911337 315.6-498.2
Enputss 089 997726 ~18304 nise n.962 1001 Y=0E80X+44.7 3119.4778
EnputsT 0.89 98526 ~16.305 0303 .96 1001 Y-NER9X 404 311.2-45882

* Inputs«{ SST. log,Xd_Lee), ool CHL), cos(Julday)k Inpatsdel SSY, Kd_Lee, bogty (CHL), costlulday)Linputedal S5T, dog)dKd_Lee), CHL. cosfJubdy)]; ingutsts( SST.
Kd_Lee, CHL, costIulday)); Iaputshe( SST, S5, logudACHL), costdadday)]; Tnputsbel SST, |l egn), bogud CHLY, cosldubday)]; Inpuns™e] SST, logarla,au), SSS, cos{dudday)],

¥ This model wis a stopaise MNK, as shows i Eg, [0

underestimation at high pCO, values. Although the model with
combination of 888 and CHL showed a slightly lowee MB for pCO, >
420 patm as compared to the model in Eq. (1), this model had a stightly
higher RMSE and lower R?, and its pOO, prediction was significantly
biased for pCO;> 480 patm  (MB=-23.804 patm, MR=0.957).
Furthermore, it is currently difficult to estimate S58 from satellite
measurements over coastal waters. Therefore, Eq. | 1) was preferred as
the patential pCO, model for this study, For reference and to follow the
principle of model parsimony, again a stepwise MNR against all terms
in Eq. ()1 was conducted. The model formula did become concise as
chown in Eq. () (compared to the formula in Eq, (1)), Howeves, the
statistics in [uble © showed that the stepwise MNR had a RMSE of
19.98 patm (5.0%) and a R? of 0.62, and its ability in estimating pCO.
for pCOu>420 patm was also limited (MB=-37.922 atm, MR~
0.916). Therefore, this stepwise MNR did nat show improvement over
the stepwise MLR ar PCR or MNR above, and was not selected in this
study to mode] surface pCO,.

pCO: = 2.0105x + 339.2493¢ + 0.5330y 10,1 7845, ~0.00351]
+ 2342682086 815167
where x;=8ST, xowlog 1o Kd_Lev), xg=log jof CHL).
Tuhle 7 is a summary of the moded perfe with

MLR, PCR, stepwise MNR, and MNR. Ouﬂy,lbeMNllmodelwuhP.q
(1) showed the best performance in terms of RMSE, R, MB, MR, the

(2)

redationship b dedexl and d pCO,, and the range of
leled versus d pCO;. Thus, the final empirical pOO, model
wits determined as:

POy = —124.0763; + TH.200x—T753.952x, + T04.22x, + 3521750
=T.084 00,34 T3 00, = 10756500~ 18 24800, — 10.09 15 x4

+ 3.525¢ = MTA20cS + IRS986:T + 105.6611] 3)

where x;=S5T, xp=log solKd_Lee), xa=log ;olCHL), xy=cos(2a
(Julday -255)/365).

The MNR moded in Eq. (1) was subsequently applied to the balf of
the dataset that was not used in the moded development. The model-
predicted pCO, was compared with the field-messured pCO., where
R®, RMSE, MR and MB were used to gange model performance. A
histogram of the difference between field-measured pCO; and model-
predicted pOO, was generated to examine the error distributions.

To examine which independent variable is mostly respounsible for
the predictive capacity of the pOO, model, the variance that is
explained by each variable was investigated by comparing the full
madel (Eq, (1), with all the four variables selected) to a redaced model
(i.e., after removal of a certain variable). Using the same regression
format (quadratic polynomial), a total of 4 reduced models were
devedoped with the exclusion of SST, CHL, Kd_Lee, and Julday,
respectively. In each case, variance in the surface pOO, explained by
the selected variables was caleulated and compared with that of the full
model, with the difference regarded as the variance explained by the
excluded variable,

2.5, Spatial-temporal pOO; distributions devived from MODIS

The model in Eq. () was applied to the daily Level-2 MODIS data
for the period of July 2002-December 2014 to generate dally surface
POO; maps. The daily maps were used to compose monthly mean pOO,
maps for each year, and these monthly mean maps were then used to
compose monthly pCO: climatodogy, All parameters, including monthly
pCO;, CHL, Kd_Lee, and SST, were averaged over the WFS to examine
Jong-term trends and inter-annunl changes,

Tahle 7
[ of model perk The step MNR and MNR are both based on K. 111, with moded coeffickents shows in Ege, (000 01 respectively, Clearly, the step MLR,
PCR, and stepraiee MNR all show large waderestimations for pOO; > 420 paem. Therefore, the MNR model was selacted a5 the Saal poO, muddh\hh study (Fg, (1)
Modd po  K? RMSE ME tpatm ) MR Relationship between Range of modolod
{putm) deled pCO, amd in site OO, (patm)
pOOy > POOLSA20 patme  pCO, > pOO52420 patm  pCOy
420 psten 420 patm
Stepwise 07 1488 -39.5% [ s nue LA Yol MEX 057 RI2-4165
MLR
PR avs 1400 35695 0,058 o LRLC S Yo, 751N+ 020 22344140
Btepwise 062 1998 -37on L7 0916 1A Yol s06X + 147,57 $12.5-510.2
MNR
MNR 0.89 1098 ~B.5196 0.561 0981 1002 YrO890X438.1 312.5-058.0
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() Hl
3. Results
3.1. Model performance

¥y Za shows the MNR moded for pCO, prediction. The RMSE
during moded training was 10.51 patm, with a coefficient of variation
(CV) of 2.8% and R* of 089, Fip “b shows the model validation
obtained with the data that were not used In the model training
Statistical results for the validation data are similar o those for the
model training, with an RMSE of 11.79 putm, CV of $.1% and R* of
088, The validation showed that model-predicted pCO, was almost
non-biased, as MR (which was 1.0006) was close to 1 and MB (which
was 0.033 natm) was close to Opatm, A histogram of residuals
(measured pCO; minus predicted pCO.) for the combined datasets
(both model training and validation data) is shown in ¥z ¢ The
histogram shows that 97.6% of the residuals were smaller than the
observed 32.45 patm pCO0y, standard deviation (+/-sigma).

The results shown in Toble 4 indicated that variables used in our
model (the foll moded) could explain 88.92% of the pCO, variance.
When SST was excluded in the model, the remaining variables could
only explain 68.62% of the pCO, variance. When Julday was excluded

seen in both Figs 3 and 4, P | variation of
CHL, Kd_Lee and SST.

On a temporal scale the seasonal variation of pOO, was positively
correlated with SST (in phase), and negatively correlated with CHL and
Kd_Lee. In summer, surface pO0, can reach 3 maximum around
450 patm. During this period, primary production s inkibited mainly
by a deficiency of nutrients caused by ocean steatification. Thus 0O,
removal through photosynthesis is reduced in the summer, and the
balunce between respiration and photasynthesis is strongly shifted
toward the former by Increasing SST, In winter, surface pOO, attains a
minimum of around 350 patm. During this time, with the breakdown
of the thermocline and increase of MLD ( > <50 mg Lo and Welshorn,
2007), phytoplankton blooms can occur gs nutréents are brought to the
surface by upwelling. Combined with the decrease of SST, which would
by itself strongly decrease pOO. (see Section 1), surface pCO; would be
expected to significantly decrease. However, another factor needs to be
considered because deep water hrought to the surface by wintertime
vertical mixing is rich in dissolved inorganic carbon as @ result of
decomposition of organics in deep waters and also submarine ground-
water discharge (Hu ot al, 2006, Cyranak et al, 2014), Thus the

bined effect of enhanced vertical mixing and decreased SST is that

ding to the

in the model, 74,.45% pCO; variance could be explained. Similarly,
exclusion of CHL or Kd_Lee would reduce the explained varionce to
B2.06% and 79.63%, respectively. Clearly, SST was the most respon-
sible variable in our model (exclusion of SST would reduce the
explained variance by 20.3%), followed by Julday. This is consistent
with thase ed in previ dbes (Friedngh und Oschlses, 2000;
Letevre ot al, 2005; Signorind o4 al . 2013), CHL and Kd_Lee were the
least important variables in explaining the pOD, varance, consistent
with Iater sensitivity analysis (see Section 1) Note that although
Julday is nat a real biochemical variable, its use improved the model
performance more than the use of CHL or Kd_Lee.

3.2, Temporal and spatial wariation of surfiace ploO;

“1y, 4 shows mean monthly pOO,, CHL, Kd_Lee and SST over the
entire WFS where pOO, is within the model range. Monthly climato-
logie maps of surface pCO; are presented in Fig. 1, with the moded
range outlined by red dashes. Distinct seasonal pCO; patterns can be

Table 8

PpCO; reaches a minimum during winter but is not sevesely diminished,
Although the interannual patterns of pCO., SST, CHL and Kd_Lee are
generally similar throughout our study period, certain exceptions can
be noted, In September of 2005, due to an intense red tide hloom that
was triggered on the west-central Florida Shelf by two hurricanes
combined with other influencing parameters (Mo ot o). 2000), CHL
peaked at 227 mg/m-3 (Fie Se). Concomitantly, surface pOO,
estimates decreased by 38 patm relative to pCO, estimates in the
previous month, but did not reach a minimum. The highest value of
surface pCO; was attained in 2010 June (15 Ja) and was about
58 patm higher than the previous manth, Considering that there was
almaost no change in CHL and Kd_Lee, and Jullan day was only a small
adjusting factor, this i was likely d by the observed 3.4 °C
increase of SST. Combined with the sensitivity analysis demonstrating
that an increase of 1 7°C in 8ST by iself can Jead to an Incresse of about
15.7 patm in surface pOO;, the appearance of the pCOy maximum in
June wis ressonable, Comporing this Interannual varfability of spa-
tially averaged pCOh on the WES to madeled pOO; results for the whole

Statiticos of the full moaled smb neSeond mods for scplavining variano in Ve setimatod surfaen pO0y, Thae ficst o svpressnnts the full meodel (Fag. 500 used G tiis study, while cther rows
roprveacnt modils with coe vieriable excluded, The ket colums shows the rodeond variseor (conguesd 1o the full model) when » variable was eodulad,

Model inputs Excluded varishle Varianee explained (%) Variance expluined by the exeluded variable (%)
5T, bop(KA_Lze), loglCIL), Jubdsy NaN Heuz MaN

Tongf Kl _Law), logfCHL), Juldzy S§T 6862 0.3

ST, o CHL), Jukdny Kd_leo 63 929

BST, log{¥a_Lee), Julday CHL B206 6,86

SST, JoyKA_Lew], bog(CHL) Jalilay 74.45 1447
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GOM (Mo of b, 2010), & similar pattern of seasonal variations with
highs in summer and lows in winter was detected. However, the model
sensitivity analysis and uncertainty and accuracy assessment that is
described below (Section 41) indicates that the vesults obtained in the
present work exhibits improved sccuracy and dess uncertainty,

In terms of observations on spatial scales (17 3), although there
were distinet gradieats in CHL and Kd_Lee dimatologh maps (not
explicitly shown here), pOO; climatologie maps showed small gradients
from inshore to offshore during winter and early spring (November to
March) whea SST was low, Other intevesting features of iy 4 included
two regions with elevated pCO; relative to thelr surroundings (red solid
cirdes in 11 ), Among other possible influences, becanse there are
large springs in this region (1iazcnnn o1 ol 1977) with low temperature
and high pCOy, this could be due 1o upwelling of submarine ground-
witer discharge, as pOO, is usually higher in fresh groundwater than
surroundings (Mocphersan, 2009, Cyroaak of ul, 2014), From early
spring to late fall (April to October), obvious pOOy gradients were
observed, changing from high to low in the offshore direction. High
pCQ; in near shore regions can be related to tidal mixing and river
runoff, earrying clevated DIC to coastal surface waters. Although DIC
in coastal areas can be diminished by photosynthesis, high nearshore
pCO, values are commonly observed. However, the extremely high
pCOy values { > 550 patm) in the nearshore regions of South Florida
miy not be reliable, as there was little pCO, data in this region and the
pCOy model developed here was only valid for pCO; ranging from 300
to 550 patm, On the other hand, such extremely high pOO; values
could be reslistic as pCO, had a positive response to SST changes and
SST in this region was higher than in offshare waters, In the offshore
region during our observation persod, due to the combined effects of
thermocline development and decreases in SST, surface pOO,; was
lower than for inshore waters. Nevertheless, In temporal teems,
offshore surface pOO; values during the summer are higher than
offshore pOO, values In the winter and early speing. In the area around
the Florida Keys, pOO; values were high relative to other regions year
round. This can be atteibuted to the influence of the LC in the Florida
Strait (clearly shown In the SST climatology map) and potentially
submarine groundwater discharge in this very shallow region.

with the modeled multi-year pCO; maps in Xoe of ol
(20140, the vesults shown here exhibit distinctive spatial distribution
panerns across nearshore and offshoce waters.

4. Discussion

4.1. Model sensitivity to environmental forcing and model
uncerfainty

The distribution of surface ocean pOO, i mainly controlled by
ocean thermodynamics, physical processes, bioogical processes, and
air-sea exchange (Takahashi ot al 2002: Inaue ot al, 2000; Raogama
et all 2005, Bai o al, 2015), Ocean thermodynamic effects are
dependent on SST, mdu\ereluimhlpbnweenmrfmepooxaxd
SST can be estimated using a simpl tial refati ip: (pCOse

=00y *exp{0.0423%(T,-T,)]) (Tumlm-ln o ul, 2002, XX9),
Physical processes such & advection, upwelling and water mixing
affect pOO, mainly by transport and mixing of different water masses
with distinctive chemical and physical properties such as tofal alkali-
nity (TA), dissolved inorganic carbon (DIC), SST and SSS. Blological
processes, including consumption of 0O, by photosynthesis, prodoe-
tion of CO; by respiration, and utilization of earbonate during
calcification also have important direct effects on the pCO, of scawater
(Revnaud ot ul, 2009), Alr/ses COy exchange can exert especially
strong controls on surface pOOy under strong wind conditions (o1
ot al, 1998; Bores and Mordivat, 2601 Turk et al., 2013), Nevertheless,
in @& fimited case study, only ane or two processes were observed to
dominate the pattern of sea surface pCO (Bt o ut, 2010),

In order to better understand bow surface pCO; responds to input
variables, a sensitivity analysis was conducted. For each analysis, one
input variable was varied while the others remained constant. Surface
pCO; predictions were compared to examine the magnitudes of change
with variations in SST, CHL and Kd_ Lee. Considering the uncertainties
observed during retrieval of satellite prodlucts, we varied CHL and
Kd_Lee by £20% and SST by + 1 °C. These are the upper bounds of
the MODIS data product uncertainties over the WFS, The model
response results are shown in Fioe 5 ol £ and additional statistics
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Fig. 4, pOO; moathly dimasclogy dertved from satellne datn using the multl-variate regression moded fur the pertod of July 2
24°N 10 31 "N and 90 "W 10 80 "W The West Florslo Shed & outlined by the red dashial Hise. The red solid cindes outline som high-spetial gradiont featuns that

of Mesicn Dutwines

were poesstbly cotmed by npwelling

such as RMSE, MR, and MB are listed in
A visual interpeetation of |
more sensitive to Input changes in CHL when CHL is > 1.5 mgm™
For CHL greater than 1.5 mg m ™, & 20% increase in CHL { a and
ta) produced pOO, predictions that were lower than the original pCO;,
while for CHL Jess than 1.5 mg m™ the same 20% increase in CHL
caused a substanttally smaller change n the predicted pCO,. Foe the
entire data range tested in this analysis (1 ), the RMSE, MR and
MB were 10.94 patm, 1.022, and 8.06 putm, indicating that a 20%
Increase in CHL resulted in an 8.06 patm pCO; overestimate. For data
with CHL > 1.5 mgm™, the RMSE, MR and MB were 16.44 patm,
0.968, and - 12.44 patm. In contrast, for data with CHL st.5mgm ™

indicates that the moded is

s Dhece 2014, The mugs showed the castern Gulf

the RMSE, MR and MB were 10,07 patm, 1024, and 8.79 patm,
respectively. A similar disparity in model sensitivity was observed for
a 2% decrease ln CHL when CHL >15mgm™ and CHL
<1 S5mgm™ | b and ob). For the entire data range, RMSE,
MR, and MB were 9.36 patm, 0.986, and —4.98 patm. For data with
CHL > 1,5 mg m™, pOO, was overestimated, with RMSE, MR, and MB
being 24.00 patm, 1,053 and 20,11 patm. Consistent with the observa-
tions described above, for data with CHL <1.5mgm™ the model
showed much reduced sensitivity to a 2006 decrease in CHL, with an
RMSE of 8,40 patm, an MR of 0,984, and an MB of -5.87 patm. Based
an the characteristics shown in | a, oa, b and ob, the pCO,
algorithm is especially sensitive 10 CHL at high concentrations. To
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some extent, this reflects the complex role of CHL in controlling surface
pCO;.

As Kd_Lee is not entirely independent from CHL, It is also clearly
seen that the pOO, algorithm is more sensitive to Kd_Lee as this
variable becomes larger { > 0.2 m™"). For Kd_Lee values greater than
02m™", a 20% increase In Kd_Lee (V1o S and oc) resulted in
substantinl increases in predicted pCOy, while for Kd_Lee values less
than 0.2 m™", a 20% increase in Kd_Lee produced pCO values close to
the original pCOy prediction, When all data were used in the analysis
the RMSE, MR and MB values for this experiment were 10.02 patm,
0.997, and —0.68 patm. For data with Kd_Lee >0.2m™', they were
29.43 patm, 1,066, and 24.51 patm, while for data with Kd_Lee
s02m ' the RMSE, MR ond MB were 8,13 patm, 0,994, and

20

L83 patm. Likewdse, with a 20% decrease in Kd_Lee (0. 5d and
6d), pCO; was predicted to be lower than the original pCO; if Kd_ Lee
values were greater than 0.2m™' (RMSE=24.04 patm, MR=0.966,
MB=-13.83 patm) but higher if Kd_Lee valuoes were less than
02 m™" (RMSE=20.81 patm, MR=1.050, MB=18.41 patm), When all
data were used In the caleulation, RMSE, MR and MB were
20,95 patm, 1.047, and 17.01 patm. The differences in model sensitiv-
ity for Kd_lee >02m™" and Kd_Lee <02 m™' are consistent with
those for CHL changes, a5 coastal waters typically have higher CHL and
Kd_Lee than offshore waters,

The sensitivity of the pCO; model to SST varied over the modeled
range of SST, For SST greater than 16 °C (Vg Oe and o), & 1°C
increase in SST produced pOO, predictions higher than the original

80
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pCO;, while for SST less thun 16°C, the predicted pCO; was much
closer to the original prediction. As would be expected from the above
analyses, a 1°C decrease in SST (Fioo 5 and of) for ST greater than
16 °C resulted in predicted pCO, values that were lower than the
original pOO, while for SST less than 16 “C pCO; predictions were
closer to the original pOO,. The RMSE values for these two experi-
ments {1 °C increase and 1°C decrease in SST) were 16,03 and
11.98 patm, with MR values of 1.030 and 0,989 and MB values of
11.57 and ~4.52 yatm.

In summary, pCO. variations created by a 1 °C change in SST, 20%
variations in CHL and 20% variations in Kd_Lee were ali within or
close to the RMSE of the model although, notably, the model sensitivity

41

vanies with the madel input rnge. Only in the case of Kd_ Lee did 20%
varkations produce pOO, variations somewlhat higher than the RMSE of
the model, However, considering the range of SST in this region
(minimum around 15 *C, maximum around 35 °C), a 1 “C temperature
variation corresponds to a 6% variation In SST, whereby [t |s seen that
the model (s far more sensitive to SST than o CHL and Kd_Lee.
Indeed, although coastal waters may occasionally bave SST <16 °C,
CHL >15mgm™>, and Kd_Lee >0.2m™", when the entire WES is
considered as a whole at monthly intervals, these conditions are rarely
met (Vi 1), suggesting that the model uncertainties are within those
specified in the model evaluation.

Because we chose to use satellite dota products directly as the
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munummnmuhmmmhlhlnpmwr-unulmﬂﬂ.m >

15 mgm ™, Kd_Loe wiss 502 m™", oc 88T was > 16°C.

Cuses RMSE (puutm) MR ME (putm)
ATN increses in CHL 1034 1002 06

Ay devrwew in CHL 036 1966 ~4.98

AN incrwss in Kd_Leo 1a02 as9? -0k

AN decrvme in Kd_Lew 20005 147 1700

1 °C increase = ST 1603 1000 s

1 °C decreass in SST 11968 09689 —4.52

model input during model developnsent, systematic erroes (eg., bias)
other than random noise in the satellite data products are implicitly
accounted for in the model coefficlents, Thus, consklering the com-
bined effects of uncectaintles (n the satellite data products and the
sensitivity test results, the uncertainties of the pCO; model should be
between 10.5 and 21.0 patm for typical data ranges, However, these
uncertainties represent RMSE values for each data point. When the
data are averaged over large scales in either space or time, the
uncertaintios in the mean products shoald be much smaller.

The empirical model developod for the WFS here shows improve-
ment over published works (1170 1) in terms of RMSE and R, but not
necessarily for other regions In the GOM (see below). Furthermaore, the
model is applicable all year round because data collected from different
months were used in tuning the model coefficients, Therefore, with
daily measurements from satellites, the model may be used study the
impacts of extremo events on surface pCO; distibations (e.g,, 2005
algal blooms and storms), although no such events were considered in
the model tuning or validation, In addition, airsea COy flux
(Foon=kKo(pCOs, ~pCOy,;,), where k is the gas transfer velocity of

Surtice pC0 (pavany

Swrfoce pO0O (il
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COy, and K, is the solubility coefficient of CO,) can be calculated with
auxiliary wind speed and atmospheric pCO. data, allowing broad-scale
assessments of the extent to which the WFS serves as o CO, source or
sink, Similarly pH {pH=log,o{[H" }¢), where [H"}; is the total con-
centration of hydrogen fons) or carb ion

([CO47 " J¢) and carbonate saturation states ([Ca®™ }y (€O lcspl)
cun be derived from modeled pCO; and regional assessments of
salinity-normalized TA oo the WFS.

However, one shortcoming of the model, as is the case for any ather
empirical models, is that the model is good only for the data range
within which it was tuned. Specifically, all data used in the tuning had
PCO; values between 300 and 550 patm as the lower and upper bounds
of the models applicability. Field data showed that pCO, could
occastonally be > 600 psatm or even > 1000 patm in nearshore waters,
As these data had no concurrent satellite data, they were not used in
the model tuning, Nevertheless, in the derived maps most values are
indeed within the range of applicability except for some very nearshore
waters (eg, in Florida Bay). Thus, the pOO; model should be
appropriste 1o most of the data over the WFS.

4.2, Model testing in other regions of GOM

With the auxiliary underway pCO; messurements in other regions
of GOM between April 2002 and May 2014 (obtained from ip /)
edlac avnl gov/oceans/Constal/ und  hitp:/ /www.anmlooss.gov/ood
o), we also tested how the algorithm (Eq. (1)) performed in other
GOM waters, Based on the distributions of cruise data after matching
up with satellite products, the validation was examined mainly in three
regions (see 11y, ) around the Mississippi delta, the northwestern
GOM, and LC affected regions (open GOM, northern Caribbean and the
Florida Strait). For region around the Mississippi River delta (1122 7a,
b und =a), predictions for the offshore region were better than the
insh For the inshore region, predicted pCO; deviated substantially
from the in situ pCO2 This result was not unexpected since water

S e pO2, 4 gt

- -
ng.?sm|wwahunuw-wwwmm-mmooummmuﬂhluﬂu uller matchup with sanellite products shown
In top pemels and the ng sotellite peedi below, This walidath bdhldcdnnu(hmmmuwv*uudwlmﬂmwﬂhmﬂﬂbﬂ(-ﬁedn)umwmhnlbx

mmnu'mmlpmdduw points outside the white decles 1o pancis 2 and b), and LC affected reghon (pandd - f), besod oo different backgroveds. Valldation for LC afectal
nginn 3 dividbnd into two time rogioses with Jol-Dv: sduwed in gunel © gml o, and Jon-Jan thows in pased v and £ The time spas of ol the & site sussensents sboun bere is from

Apell 2002 to May 2014,
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residence times are much shorter inshore, and dynamic salinity
variations caused by extensive large river discharge create large
varlations in surface pCO;. Compared with the sateltite-derived pCO,
map for Mississippi delta generated by Jolirens wnd Cal (2000) for
June 2003, the offshore patterns show general consistency but the
results obtained in the present work reveal temporal and spatial
variations in greater detail, For predictions in the northwestern GOM
(¥lge 7o, b and 5b), the modeled pCO; generally followed the in sty
PCO. variations, but with an RMSE of 44,1 patm. For prediction in the
LC affected region, pCO; was well estimated (RMSE of 13.7 patm)
between July and December (Fige V¢, d and 5d), while between
January and June (Vg Te, f and dc), the estimation was poor with
an RMSR of 798 yatm. For the January to June period of high

we  prop that dominant influences oo pCO.
mllnencmg mechunisms may be different from the mechanisms that
are dominant between July and December. Accordingly, pCO,
variations are not well represented by the parameters used in var
model. To some extent, this hypothesis is demonstrated by examining
the monthly distribation of the LC (i w720 b nayy mil)
GLBhycom1-12 e /novo/are_list glfmexspdearMN tml) The
extension of the LC shows different distribution patterns during
these two perinds. Because the controlling mechanisms for surface
PCOy can vary across geographic regions, region-specific algorithms
need Lo be developed, For the Mississippt delta, rver and ocean mixing
are likely to strongly affect surface pCO; distributions, and SSS is a
good tracer for mixing effects. Due to the complexity of this region,
much further research needs to be done, For the LC affected region,
parameters that reflect the characteristics of LC need to be found in
order to better estimate surfsce pCO,. For both the western and
southern GOM, sdditional in situ data are needed for algorithm
development.

5. Conclusion

With extensive field and satellite observations and after testing
several algorithm approaches, an empirical algorithm for predicting the
surface pCO; on the West Flarida Shelf was developed and validated.
The algorithm toak Julian day and MODIS-derived CHL, Kd_Lee, and
SST as inpats, and determined algorithm coefficients throogh multi-
variate ponlinear regression against concurrent in situ pCO,; measure-

ments. The algorithm showed reasonably good performance and was
used to derive spatial distribation maps of surface pCO, distributions
an the WES as well as their seasonality and interannual changes.
Observed distributions and temporal changes can be well explained
hased on u sensitivity analysks for the input parameters. Application of
the algorithm to other GOM waters showed varlable performance,
indicating that different pOO., controlling mechanisms exist in differont
reglons,
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Nomenclature

AOML  Atlantic Oceanographic and Meteorological Laboratory
CIMAC  Carbon Dioxide Information Analysis Center

ChOM  Colored Dissolved Organic Matter

CHL Chlorophyll-a Concentration
CO25YS QO System Program

DiC Dissolved Inorganic Carbon
ECS East China Sea

GOM Gulf of Mexico

DL ive Data Langung
LDEO  Lamont-Doberty Earth Observatory
MARS  Mississippi-Atchafalaya River Sy

MB  Mean Bias

Mechanistic Semi-Analytical Algorithm

MLD  Mixed Layer Depth

MR Mean Ratio

Moderate Resolution Imaging Spectroradiometer
NBS National Bureau of Standards

R? Coefficient of Determination
KMSE  Root Mean Square Error
SOMs  Self-Organizing Maps

85§ Sea Surface Salinity

SST Sea Surface Tempernture
TA Total Alkalinity

U. S Geological Survey
WFS West Florida Shelf

1. Introduction

Coastal air-sea CO; flux plays an important role in the global carbon
budget (Borges et al., 2005; Cal et al,, 2006, Cai, 2011, Chen et nl,,
2007), Due o the complexity of biogeochemical and physical processes
in coastal margins (Lefeyre of al., 2002, Fennel et al,, 2008; Dut ef al,
2009; Zhat et al, 2009; Atkins et al., 2013; Hauer et al., 2013; lawa
et wl, 2013; Marctta et al, 2030; Norman et al, 2013), large un-
certaingies still exist in coastal air-sea CO, flux estimation (Naues et ol
2000 Chen et al, 2013), On the other hand, oceanic uptake of OO, has
resulted in ocean acidification or decreased surface water pH (by — 0.1
umnits) (Caldeirn and Wickett, 2003; Orr et al., 2000; Daney et al,, 2008
Sun et al, 2002; Pachourt and Meyver, 2014), leading to a decrease in
marine biediversity and decline in ecosystems and environments
(Widdicombe and Spicer, 2008; Daney, 2010; MHckinson et al, 2012).
Surface pOO, is a critical term in understanding coastal ocean acid-
ification and airsea CO; flux caleulation (Bover ef ol 2015 Feely
ebul, 20000 Col et ul, 2011), thus it ls important to quantify surfsce
PCO; with high sccurscy.

In principle, surface water pCO; in coastal oceans is mainly con-
trolled by four processes: physical mixing, theemodynamic effect, bio-
logical activities, and air-sea CO; exchange (Fenael e al, 2008 Thawa
eral, 2000 Xue et al, 2076), Different water masses have specific
carbonate characteristics such as total alkalinity (TA, pmol kg”) and
dissotved Inorganic carbon (DIC, pmol kg™). The horizontal and vertical
mixing among these water masses can affect the surface pCoO; dis-
tribution in a dynamic way. In a carbonate system, once sea surface
temperature {SST, “C), sea surface salinity ($SS, pructical salinity unit)
and pressure are known, any two parameters of TA, DIC, pCO,, and pH
can be used to calculate the others and CO, speciation (e.g,, [CO, '] and
thus carbonate mineral saturation state) using the CO; System Program
(CO2SYS) (Mierrot and Wallace, 2000), Ocean thermodynamic effect
Is dependent on SST, and the relationship between surface pCO;
and SST can be estimated with an  exponential  function
(PCOs .y = POy x 55N (Tikahashi o1 al,, 2002, 20(9) al-
dnug:ae exact parameter can deviate slightly from 0.0423 in coastal
waters (Hot et al. 2015 Joesoel v sl 2015), Biological activities such
as photasynthesis, respiration, and caleification have direct effects on
surface pOO, (Reyiaud et al, 2002) because photosynthesis consumes
CO,, respiration produces €Oz, and calelfication depletes both TA and
DIC In a 2 to 1 ratio, The air-sea 00, exchange can also Impact surface
PCO; values during extreme events (eg, hurricane, storms) (Dot
et al, 1998, Rotes and Merfival, 2000; Turk ot al,, 2013). However, it Is
difficule and challenging to quantify all these complicated processes
separately.

Closely linked to the abave processes, several environmental vari-
ables can affect surface water pCO;, sich as SST, 58S, mixed layer depth
(MLD, m), and chlorophyll-a concentration (CHL, mg m™~). With these
variables as model inputs, varlous approaches such as empirical

regression (Lohrorsz and Cal, 2006, Lohrenz et al,, 2014 Marrec et al,
20015, Chen ot al, 2016) and feedfarward neural network (Jo ot al ,
201 1) have been developed to moded surface pCO, in 1 In
addition, surface pCO; models have heen developed for different
oceanic regions through the use of self-organizing maps (SOMs), either
pattern recognition neural network based (Lolevie o ol 2005,
Priedrich and Oschiles, 20080, 20090 Telszewski ef al,, 2009; Nakanka
et al. 2013) or linear regression based (Signorin et nl, 2013; Parnrd
et al, 2015, 2016). G Ily, these empirical approaches can predict
surface pCO; with relatively low uncertainties (< 40 patm) and can be
applied to different kinds of coastal margins (e.g., river.dominated,
upwelling-dominated, and current-dominated) when the model coeffi-
cients are tuned locally. However, as with any other empirical ap-
proaches, the disadvantage of these models is that esch model is only
applicable to the modeled data range and environment, and the pre-
dicted result is bard to interpret physically, biologically, or chemically.
With the aim to overcome the problems inherited in empirical
models, recently, & nonlinear semi-mechanistic model together with
SOMs has been developed and wsed in the upwelling dominated US
western margins (1ol o ul, 201 2) In this model, temperature is used
a5 & main parameter to measure vertical mixing which varies In dil-
ferent upwelling subregions; changes in DIC and TA caused by mixing
and thermal forcing are modeled with changes In SST and CHL; and
then surface pCO; is caleulated from DIC and TA using CO2SYS. This
method overcomes the nontinearity of the marine carbonate system, but
errors (n the modeled DIC and TA could propagate through the caleu-
lation of surface pCOy. Also recently, & mechanistic semi-analytical al-
gorithm (MeSAA) was developed to model summertime surface pCO; In
a river-dominated coastal ocean, namely the East China Sea (ECS) (7
et ul. 2018), to stady pCO, variations in response to various controlling
mechanism during summertime. The main idea is 1o quantify the effects
of dominant processes (horizontal river-ocean mixing, thermodynamic
effect, and biclogical activities) on surface pCO; in summer when river
discharge plays a significant role in affecting ocean properties. [n the
work of Hal o0 gl 12015), the effects of river-ocean mixing and ther-
modynamics were estimated by assuming conservative mixing between
river and ocean end members, and the biological effect was para-
meterized by an empirical relationship between SST-normalized surface
PCO; andd CHL. developed in the adjacent open ocean. Song et al. (20)6)
applied the MeSAA methad to the Bering Sea in summestime, when it is
dominated by oceanic waters. They modified the MeSAA by removing
the river-ocean mixing term and adding a reference term that has re-
latively stable temperature with minimal influence from mixing and
biological processes. Although both results showed relatively high un-
inti PP h may still provide a new way in quantifying
surface pCO, variations, especially for river-dominated regions. How-
ever, the applicability of this type of mechanistic approach to other
river-dominated regions is unknown.
Compured with the ECS which is affected by only one big river
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(Yangtze River), the northern Gulf of Mexico (GOM) (V1 1) receives
river inputs from the Mississippi-Atchafalaya River System (MARS) as
well as severnl smaller rivers, resulting in a mare complicated en-
vironment. Massive input of organic and inorganic terrestrial carbon
and large amounts of nutrients enhance the biological activities in this
area, which may lead to very Jow surface pCO, levels and a corre.
sponding large uptake of atmospheric CO; (Car 20070 Lohrens and Cal
2006, Cxi and Lobirenz, 2010; Huang et ul., 20155). In summertime, the
nocthern GOM exhibits maximum  stratification  where thermo-
dynamics, strong biological activities and horizontal mixing slong
salinity gradient are dominant factors in influencing surface pCO,
(Rabalais et nb, 2002 Marey et al., 2003; Huang et ol,, 2015a, 2015h),
The MARS plume is not constrained on the continental shelf in sum-
mertime (1 ol nl, 2003), instead, the plume can reach the sope areas
and to the Flotida Swraits (Ortner o al, 1995, Hu e al, 2006)
Therefore, river-ocean mixing may play a major role in influencing
surface pCO, distributions in the northern GOM.

The primary objective of this paper is thus to test the applicability of
the MeSAA model to another river-dominated margin, the northern
GOM where river discharge plays an Important role In affecting the
ocean's bogeochemical properties, However, different from that of the
East China Sea, the northern GOM Is also a warmer, more closed
marginal sea with more complex river end member conditions.
Therefore, another objective Is to compare the MeSAA model results
with results from a locally taned MeSAA model and a conventional
empirical regression model, bath specifically tuned for the same region.
Although same work has been done in modeling surface pCO; in this
area (1obreaz and Cal, 2006; Lohronz et al, 2010), due to lack of long-
term in situ data, more work is required to develop improved models
for synoptic mapping of surface pCO; with high accuracy via satellite
remote sensing. In this study, the aniginal MeSAA, the Jocally tuncd
MeSAA, and the empirical regression approaches are applied using an
extensive dataset collected fram the hern GOM to 1) test the ap.
plicability of the MeSAA apgroach in the northern GOM, 2) understand
the effects of riverocenn mixing and biological processes on surface
pC0;, 3) develop a locally tuned MeSAA model for the northern GOM,
and 4) compare the performance of the MeSAA, locally tuned MeSAA,

Swrface pCO, (patm)
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and a locally muned empirical regression model. The ultimate goal is to
make recommendations on model develop for this complex region,
where the findings may also be extended to other river dominated
margins,

The manuscript is structured as follows. The background and mo-
tivation of this work are introduced above. Section 2 presents the data
and data processing methods; Section 3 describes the methods used in
developing each model (original MeSAA, locally tuned MeSAA, and
empirical regression); Scction 4 presents the performance evaluation of
each model; Soction 5 discusses the model sensitivities (1o uncertainties
of the input variables) and strengths/weaknesses of each model; Fi-
nally, Scction & summarizes the main findings with conclusions.

2. Data sources and data processing
2.1, Field dam

Several cruise surveys collected underway surfuce water pCO; duta
fram the northern GOM waters and the GOM open waters, These are
described in Tables | and 2, respectively. None of these data were used
in a recent effort to estimate surface pCO; on the West Florida Shelf
(WES) (Chien on ol 2016 Data from the northern GOM was collected
between 2003 and 2013 In July-September, and data from the GOM
open waters was collected between 2006 and 2013 In February-April
and December. These data were obtained from the Carbon Dioxide
Information  Analysis  Center  (CDEAC)  (hiip. /ot gov/)
(Wonninkhot ntal., 2013a, 20130, Subine et al, 2014; Cal et ul,, 2002,
20025, 201%3), the NOAA's Adantic Oceanographic and Meteorological
Laboratory (AOML) (htip//www aomlnoaa.gov/ocd /ocdweb, ace
hemb) (Wanninkhof et al, 2009, 2000, 20120, 2012, 2012, 2013¢),
and the Lamont-Doberty Earth Observatory (LDEO) of Columbia Uni-
versity  (hoepe//www Ideco.columbin.edu res/pl/CO2/cnrbondioxide
pages/pCO2data html) (Sutherland ot al, 2013), Por pCO, data col-
lected in the northern GOM, due to abnormal upwelling in July 2009
(Zhang ot ol 2012 Huang ot al, 20153), pCO; data collected nround
the Mississippé River mouth and adjacent offshore region (red boxes in
Figs ‘b and |c) showed much lower pCO; values than those collected

Norfoce pCO, {patm)

PO, &

M distnbutior

20002007 b 2000
.-

1 Sariace

Pig. 1. Spatial distrRutions of the Seld seasuead pO0; aloag e ship transects in the noethesn GOM (120 1c 11 (o) All cruise tracks; (b) and (¢) e for July 2006, 2007 sad 2010, sod July
2009, regpextivoly. Note that around the Misdssippl River dedts ned offshien mogion (red booces in b and ¢, duo 10 sbooemal upmeelling s July 2009 (o of ol 20000, OO, dets

coliected In Jety 2009 I this ares were mot used (n this study; (d) Same field dasa as shown In {0) where Sigh.quality MOOIS £3 B duy CHL data

L

the field dane.
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Table 3
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UVaslerwiy pO0; mesyssrements i the northern GOM during sussmer Cluly-Sopoember]) ot a dopth of 5 m, with = measurement interval of — 2 or 3 s For mach cruise survey, the number
of olerrvations was groatly reduced when concament MORES standand Level-3 8 dary Q1L compostie data was found. Correspoasding cratse tracks ane shows in /¢ 1, Kote that pCO, des
enliozted in July 2000 around the Misisippi River delts und offsbore region (red boees in G Thand (e} wie not ved in this shudy, dee 30 abeond spwelling in July 2000 (1o

Sl 200 b el s, but dats colinetrd catsbde this rogios in July 2009 wene still ted. Al oote that data Tiewsl s this tablo were st wasd in Chon of ol 120100t devedop & pO0y

model for the WIS,
Cruine 1D Ship nume Dale range # of ebservations # uf chservutions with matching MODIS data
Cosstnids Coeetal Missmipgd Beoy AN SRIG-R/39 2000 684 o
MS SOW 0N Cravzal Misomsippt oy TS0 ne o
MS SSW 0N Cooezal Missssippt Beoy FAN203-5730/.2000 043 1
GMOO06 O Bold DO62006-9/11 /2006 nar £
GANOON OV feld /1R 2000-8/24,2000 14841 ?
Gosoy RNV Cape Mattern F0972000-7 /30,2009 w96 R
GLOS04 Loz RY Gordon Guseer G721/ 2000-5/22,/ 2008 A o
GUOSHIS L2 RV Gordon Guater T N-T /20200 8267 =
GUOAOS Lingd BN Gordon Gumter B/ 72000-8/33,2000 05 1o
GLOAO4 L) R/ Gordon Guntar 91 A2009-9/10/ 2000 200 =
GUCAOS 12 B/V Gordon Gister O/15/2000-9,29,2000 1046 =S
Laroevn 1009 MV Las Curress /16 2000-5,20/2000 637 =
LavCoevan 10-10 SV Las Curress A7 /2010-8/18/2010 o 5t
LasCoevin 11-10 MV Las Cuevas 9/1/2010-9/5/2010 814 42
LasCoevin 12-10 MV Las Curvas 9/21,20010-9/28/2010 36 6
LavCuevinn 9-10 MV Las Curvas TA2010-7/18,2010 L 13
AE200306 R/V Beown 9/13,2003-9/19/2003 nmn ]
RE200307 R/V Brown 0/21/2006-9/30,2008 1232 48
BELGOSA RV Brown 77317 2006-8/16/2006 2 52
REZD0S0HH R/ Brown 8/22,2006-5/11/2006 1652 1
REZDDE06T R/V Brown 9/14/2006-9/15/2006 ne 43
RE200705 RV Brown TN N0T-7/17 /2007 852 16
REOD05 RV Bromn B/21,2000-9/12,200% 585 5
RE090ST R/ Brown 9/14/2009-9/15/2009 362 1%
Tuak 67,009 a7

Table 2

Usderway pCO; messuromonts dn the GOM open wators during spring (Feb-Apr) snd winter (Dec), which were wad 10 model the bintogical effect om surface pOO,, These datn were
meavnd st o dopth of Sm, with 0 moourement fmterenl of ~ 2min, Dwts collectnd in summer wis noe used, due 10 the igetrupdee cimmcteristics of the GOM upen waters in
sammertima. For each cruise survey, the number of ohwrrvations was greatly redoced when concument MOOIS sandord Livel -3 § day OHL composne data was framd. Corresponding

crutse tracks arw shown in 1px 23 & Th, Nooe that these dats were not used in Clien o0 20 (20100 10 develop n pO0; mnded for the WIS,
Cruise 1D Shap nume Dute range # of chservations # af chanrvations with matching MODIS duta
GUOADZ Lrzd RV Goesdon Goneer 472972008430, 2008 4238 “
GUOAOT Jegt WA Goeslon Gurser AN6200 o o
GUOAT g2 AV Goedon Gurser R 174 o
GLOSOZ Jegt RV Gordon Gumser ASTANA T W09 304 1o
GLOSO2 Jeg2 WA Goedon Gunter 4722720054 73072009 s S
lastorvas 2-10 MV Lo Cyeem L2N0-2/14/200 1366 o4
LasCoevas 510 M/V Las Coree A192010-4/20,2010 s 40
LayCuevin 14-10 MY L Curvie 12/1R/2000-12/20/2010 747 104
MISISIC RV Marcus G, Langush AA92003-020,201% 41 =
MIZSPC WA Marcus G, Languash A7172013-4/3,2013 50 =
Tomd 15,215 558

in July of 2006, 2007 and 2010, as shown in iz b and |c. Because
this abnormal upwelling condition did not meet the conditions in the
original MeSAA approach (horfzontal river-ocean mixing, thermo-
dynamic effects, and biological activities dominate the variations of
surface pCO; in the summertime northern GOM) and abpormal up-
welling may change the direction of airsea CO, flax (Husng o ol
21152), these low pCO, values were not selected in this study. Data
from the GOM open waters were selected in order to model the biolo-
gical effect on surface pCO,. Note that due to the weak biological ac-
tivities in the GOM open waters during summestime (CHL < 0.15 mg/
m®); data in July-September were not selected in modeling the biolo-
gical effect. Seawater samples for measurements of pCOy, SSS and SST
in both the northern GOM and the GOM open waters were collected at a
depth of = 5 m using a shipboard flow-through seawater system. The
ﬁmmmm&enmncoumcouopmmm

ar 7000 or 840A ar 820) (Feely et al. 1998 Plerroe et ul,, 2000) with an
accuracy of 2patm (or better) and a measurement interval of 2 ar
3 min. The details of data collection, processing, and quality control can
be found In Feely ¢t al. {1998) and Perzat et ol (2009) and Huang e al
(20150, In addition to pQOy, $SS and SST data were collected using a
CTD (SBE.16 or SBE-2] or SBE-38 or SBE.45, Seabird Inc., USA, YSI
6600) integrated in the underway pCO, system.

All cruise data obtained from CDIAC, AOML and LDEO have un-
dergone quality control analysis. These data were converted into the
same format with an Interactive Data Language (IDL) program, and
were visualized and quality controlled (i.e., by examining data quality
flags and metadata files) to discard apparent errors (e.g., individual
spikes due to i malfunction or other fi ). A total of 67,669
PCO; observations were selected for the northern GOM to develop and
nﬂ&mummmm:ﬂmmm.worls.zlsob

color-coded in situ pCO, are shown in Fige Ta and 2a, respecti

ser were selected for the GOM open waters to madel the biolo-

WqummMmmammumdagsemﬁum
and & non-dispersive, Infrared analyzer Li-COR™ (model 6251 or 6262

gical effect on surface pOO, for the MeSAA.
The MeSAA has two explicit compoaents on modeling physical and
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Serfaace pCO, (patmy

CHE tmg m's

pical effect oo surface pOOy, with fedd data colfected from the GOM open waters. (] Spatial distributions of the fledd messured pCOy alorg the ship
transcty in the GOM cysen waters {10000 21 (1) Tha s fisdi) data wheee bigh-qusiiey MODIS L3 § day CHL data b

graisea) the Beld s (c) Ralaticnship

sarfoce pOO; and 5ST, with CHL color coded in kgarithmic scale. The correspondiog saefoce pO0, spacal distnibution Is shown [n (D). The strong depesdency of sarface pCO; on 85T

Inndicsed the v of

ing the th

7

effects Soe the quanification of the biokgical effect un surface pCO, (d) Relstiorahip b 58T

d pC0; (050 mvm}

and CHL. Note that to remove the thermodynamic effects oo surface pCOD;, only data with SST resiriceed to within = 1 °C of the monthly mean SST wers applied,

biological effects, respectively. To model the physical effect, namely the
effect of harizontal river and ocean mixing oa surface pCO,, through a
two-endmember mixing model, TA and DIC data of the river and ocean
endmembess were carefully selected. Specifically, river endmember
TAs of 2420 pmol/kg and DICy of 2450 pmol/kg at 885, = 0.1, and
ocean endmember TAi e of 23993 umol/kg and  DIC,cp, of
2082.8 pmol/kg 8t SSSenm = 36.04 from Huung o1 al (20150) were
applied in this study, DIC, was assumed to be 30 umol/kg higher than
TAg (Goo ef al. 2002 Cai et al, 2013), and oceanic TA and DIC were
linearly normalized to salinity of 35 using Eqs. (1) sud (2) (marked as
TAgs and DIC, €.8., Yimg ef al.. 2015) with the river endmember TA,
and DIC, at 588, = 0,1 as the Intercepts, respectively. To quantify the

variations of riverine TA of the Mississippi and Atchafalaya Rivers, TA
data of both rivers between May 2006 and Feb 2015, were obtained
from the U. S Geological Survey (USGS) water quality database (hop 0
awls waterdata usgs.gov usanwis/gwdomn). TA data for Atchafalaya
River was the average of two stations (USGS Station 07381590 in Wax
Lake Outlet at Calumet, LA, 29°4152'N, 91°22'22'W, and Station
07381600 In Lower Atchafalays River ar Morgan City, LA,
29°4133.4N, 91" 12426"W), and TA diaa for the Mississippl River was
from USGS Station 07374525 (n Mississippl River at Belle Chasse, LA,
(29°5125'N, 89°58'90°W). As shown In Fig 3, between May 2006 and
Feb 2015, the TA ranges of Mississippi river and Atchafalaya River were
1204,0-2940.0 pmol/kg and 1014.0-3170.0 pmol/kg, respectively, In

3500 Fig. 3. Varations of TA of the Misstysippt ond Atchaéalaya rivers

e — between May 2006 and Feb 2015, Data for Atchalalays Rives was
3250 'M'SS" RIVEr i, verage of fwn statinns (USGS Station 07381590 in Wax Labe
3000 ~Atchafalaya River  gu o calumer, LA Roa152w, 91°2222W), and Staticn

2750

1250

et 14y

07381600 in Lower Awchafalays River ar Moegan City, LA
(297415, 4N, 917 1242.6°W). Data for Missiesipge Hiver wars from
the USGS Statkon 07374525 In Mississippl River at Belle Chasse,
LA (951 20N, M55 a0wW)

lw%ll()ﬁ 01/07 01/08 01/09 01710 01/11 01/12 01/13 01/14 01/15

Date (mmiyy)
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summertime during this period, the TA range of Mississippé nver was
2040-2980 pmol/kg, and the TA range of Atchafalaya River was
14602960 wmol kg. Accarding to the river flow rates of bath rivers in
summertime between May 2006 and Feb 2015, the Mississippi river
contributed around 82% to the total river discharge to the northern
GOM (data not shown here), thus the variation of river endmember TA,,
was 1935,6-2894.4 pmol/kg. The uncertainties of the parameteriza.
tions of TA,, and DIC,, caused by the variations in riverine TA and DIC in
summertime were analyzed and quantified in Section 510

(TA s — TAY)

TAw o iy — U] S S
e Ty X (5585 + A, -
DIC e — DIC,
DIC,, = ——oat = 2753 o (35885, + DI
" e ®{ SSi) + DIC, @
2.2, MODIS dara

To quantify the effect of biological activities on surface pCO,,
standard NASA Level-3 CHL data (verslon R2014.0) between 2003 and
2013 were obtained from the NASA Goddard Space Flight Center
(hrpe coceanenlor gsfenan.gov/), The use of satellite CHL was not
oaly because there was no field CHL data available, but more im-
portantly, the pCO, models were developed for satellite applications.
Therefore, if satellite-derived CHL was used to train the models (see
Sections 5.0 5.9) the errors in satellite-derived CHL would be implicitly
included in the mode! coefficsents. The 8-day composite Level-3 CHL
data at 9-km resolution were generated from measurements by the
Mo Resolution Imaging Sp dil (MODIS) an the Aqua
satellite using community-accepted standard algorithms. Specifically,
the Gordon and Wang (1994} algorithm was used to remove the at-
mospheric effects, after which a combination of band-ratio algorithm
(O Heitly el 2000) and band-subtraction algorithm (110 et ol 2012)
was used to estimate CHL. Various data quality flags (e.g., straylight,
sun gling, etc.) were used to screen low-quality data when generating
the global composite data (ot vt ol 2003), In general, comparison
between sstellite-derived CHL and field measured CHL showed un.
certainties ranging from 5% to 33% (Grepw and Casey, 2004, Halley and
Werdall, 2006; Melin et al., 2007; Carnizzar ot al., 2013a)

3. Methods in model development

Concurrent and collocated MODES and field data were used to de-
velop and test all three models: the original MeSAA with its para-
meterization as presented in B o ol (2015, a modified MeSAA with
locally-tuned parameterization, and an empirical regression model.
Here “concurrent”™ means that the time of the fiedd data collection is
within the MODIS 8-day period, and “collocated” means that the field
pCO; data within a 9-km MODIS pixel was avernged to match the sa-
tellite data,

After the strict quality control and field data binning, for the period
between 2003 and 2013, 676 conjugate observations of field-measured
pCO; and MODIS CHL dsta were avallable for the northern GOM
(Fig 1d), and 598 conjugate observations of field-measured pCO, and
MODIS CHL data for the period between 2006 and 2013 were avallable
for the GOM open waters {I'';. /b), In the matched dataset for the
northern GOM, fickd-measured pOO,; mnged between 31613 and
451,70 patm, field-measured SST ranged between 27,95 and 31.51 °C,
ficdd-measured SSS ranged between 26.85 and 36.67, and satellite
CHL ranged between 0,043 and 1.609 mg/m”. In the matched dataset
for the GOM open waters, the range of field- measured surface pCO,,
field-measured SST, ficldmeasured SSS, and satellite-measured
CHL were 336.22-394.04 patm, 22.50-26,35°C, 35,06-36,57, and
0.058-0.560 mg/m”, respectively. These matched d were used to
develop and validate the following pCO; models.

For both the ariginal and Jocally tuned MeSAA models, pCO; was

Centivensal Shelf Resenrch 151 (2017) 98-110

derived from the estimation of the influences from thermodynamics,
river-ocean mixing, and biclogical activities. Field-measured pLO; was
not used in the model development but used for madel evaliation only.
For the empirical regression model, the 2003-2013 pCO; dataset was
divided rundomly into two groups with one for model training and the
other for model validation.

3.1, A brief description of the MeSAA

The detalls of this satellite remote sensing pCO; model — MeSAA -
can be found in Bar o1 ol (2015), but for completeness o brief de-
scription is provided here,

For the physical aspect of river-ocean mixing (POOuw sminieg), cON-
servative mixing of TA and DIC was assumed (Cai o ol 2010; Wang
eral, 2000 Yong et al, 2015), and TA and DIC at certain salinity level
were estimated with a linear riverocean mixing model as shown in Eq.
{3) (Jiang ot al., 2008; Hai et al, 2015 Yang et al,, 2015). Each pair of
TA and DIC with ancillary SST, $5S and pressure was used to calculate a
PCO; value with Eq. (4) using the OO2SYS (Pierrot and Wallace. 2006).
Carbonic acid dissociation constants (K, and Kj) of Millero et ol
(2004, Dickson's KHSO,, pH scale of the National Bureau of Standards
(NBS), and [B]y value of Uppstrom (1574) were applied in the CO2SYS
PLO; calculation.

TAs = TAs 555 + T, Dic = 20— DG

A
U==% 35

X 88§ + DIC,

(3)

To avoid redundancy, the thermodynamic effect on surface pOO,
variation, through the use of SST, was also included.

PO sgpmning = COZSYS(TA, DIC, SST, 858} (4)

As shown in Iy Z¢, there is a clear trend showing the relationship
between SST and surface pCO,. To model the effect of biological e
tivities an surface pCO,, this thermadynamic effect needs to be remaved
first. To do so, pCO, diata in the GOM open waters was restricted to
within = 1°C of the manthly averaged SST of each moath, and nor-
malized 1o the monthly averaged SST using Fq. (50 (Talahahi on 0l
2002, 2004).

'mwhu = P‘-'Dwr-- X @M Tau— T (5)

where T is 58T in °C, and subscripts ‘nor’ and ‘obs' symbol the nor-
malized and observed valucs,

The variation of SST-normalized surface pCOs (POOugran) Was
supposed to be caused by the biological activities, which were related to
changes in CHL. Thus, pCOug . Was regressed against log;o(CHL) by
linear regression as shown in Eq. () and Vg 2d. CHL was scaled
Jogarithmically because CHL tends to be log-normal in large-scale dis-
tributions (Camphell. 19935).

POO 1y = =357  log, CHL + 32894 ()

The Integration of the changing rates in pCOy 1 Over changes in
CHL was regarded as the effect of blolagical activites on surface pCOy,
Therefare, 10 model the changing rates of surface pCO; corresponding
to CHL changes, partial derfvatives (over CHL) an both sides of Eq. (61
were calculated, and then the variation of surface pCO, caused by
hlological activities (APCO 1) Was obtained using Eq, (7 (CHl, was
empirically set to 0.01 mg/m”) by integrating the derived partial deri-
vatives over the ranges of CHL. However, the final modeled pO0, via
such integration alone showed large difference from the field-measured
PCO, Therefore, different from Hal e ol (2015), two empirical coef-
ficients (n and b) were added in Eq. () to account for the different pCOy
response to biological activities between the northern GOM and GOM
open waters through empirical regression, thus the total biological
coefficient (B), which was the coefficient of log, o{CHL) in the biological
term ApCOy 00, was 96.04.
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APCO,y,,, » =357 % (0, CHL = log, CHly) X @ + b o

where a = 2.49, b = 2.57, and CHLy = 0.01 mg/m®.

For model evaluation, the sum of elver-ocean mixing and blological
activities was used o represent the MeSAA-predicted surface pCO,, as
specified In Eq. (97, even though the biological component was based
on emplrical data firting (020 o0 0, 2015). The model-predicted pCO;
was compared with the fleld-measured pO0,, where coefficient of de-
termination (R”), root mean square error (RMSE), mean ratio (MR), and
mean blas (MB) were used to gauge model performance, A histogram of
the difference between field-measured pCO; and model-predicted pCo,
wis also generated to examine the error distributions.

PCO; = PCOgGu iy + AP Vg0 (8)

3.2, Locally mned MeSAA

The original MeSAA used an empirical relationship trained in the
adjacent open ocean, where river-ocean mixing is minimum, to model
the effects of biological activities on surface pCO, in the ECS (o et ol
2015), The extrapolation from open<cean to the river.dominated
nacthern GOM may be problematic. Therefore, in the locally tuned
MeSAA this open-ocean based modeli p for the biological
effect was replaced with a locally-trained empirical relationship be-
tween ApCOO;4., and SSS and CHL, while the modeling of the river-
ocean horizontal mixing (PCOpgqqmiving) Was kept the same as in the
original MeSAA. Specifically, the residuals between the feld measured
2C0; and pCOg Ly g expressed a5 ApCO,, was calculated first wsing
Eq. (V). Then, the relationships between ApCO: and environmental
parameters such as SST, SSS, and CHL were examined. Finally, ApCO,
was regressed against SSS and logof{CHL) by an empirical linear re-
gression, and the calculated pCO; by Eg. (11 was regarded as the effect
of blological activities on surface pCO,, namely APCO 2y o,

APCO, = POy et = POty

ApCOy,,, = 19.54 X S55 + 831 x log, CHL-T77.40

)

(a0

Similar to the original MeSAA, for model evaluation, the sum of
PO gatmecing 800 APCO2gn,. Was used to represent the surface pCO;
estimsated from the locally tuned MeSAA. RMSE, R, MB and MR were
caleulated to gauge the model performance. A histogram of the differ-
ence between field-measured pCO, and modeled pCO; was generated o
examine the error distributions.

3.5, Empirical regression

Chen et al (2016) showed 8 multi-vartate statistical approach to
model surface pCO; on the WFS. The same approach was used 1o de-
velop the relatienship between surface pCO; and environmental vari-
ables (SST, SSS, CHL) as well as day of the year (Julday) for the
northern GOM. The dataset was divided randomly into two groups,
with one group used for model training and coefficient tuning, and the
other for model validation. The refationships berween surface pOO, and
environmental varinbles were examined,

After extensive trial and error tests using various functional forms
and model (nputs, the regression equation was determined as:

pCO; = koxy + kix + koxy + KX + ke + ksmxy + konxg + kynx
+ Retpxs + kv + koty? + At 4 kpag® + kaxy® + Contant
(1)
where x; = SST, x, = §88, xy = log,, (CHL), x; = cos (2x(Julday —
11/365).

In this equation, Julday was sinusoidally normalized to reflect the
seasonal feature (Friedoich and Oschlies, 2009, Ledevre et al, 2008
Sigoorinl e al, 2013), and y was a tuning parameter ranging from 0 to
365 days, and was determined to be 330 by iteration until the minimum
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root mean square error (RMSE) between modeled and measured pCO,
was hed. The final empirical pOO,; model was thus determined as

pCO, = — 202075y + 21240 + 42612y — 12259,
+ 15305 = 306X + 2860, — 12684,
+ 08500 + TATKx, + 277%° — 0.99%7
—7231x° 4 L% + 281401

(12)

where x; = SST, x; = 888, %3 = logo (CHL), x4 = vos (2n{Jukday —
330)/365).

The model was subsequently applied to the other half of the dataset
that was not used in the model development. RMSE, R*, MB and MR
were caleulated o quantily the model pecformance in both model de-
velopment and model validation. A histogram of the difference between
fleld-measured pCO, and modeled pCO; was generated to examine the
error distributions.

Note that although the model form fn Eq. (121 ts the same as tn Chen
et ul (20165, the model coefficients are specifically tuned for this da-
twaset, thus different from those In Chen e ol (2016) for the WES,

4. Results

In this section, the performance of each of the three models (original
MeSAA, bocally tuned MeSAA, and empirical regression) bs examinesd
and compared, in terms of statistical measures and spatial distribution
pasterns of modeled pCO,,

4.1, Original MeSAA

Fi5, 4n shows the comparison between pOO 20 s Calculated with
the river-ocean mixing model and field-measured surface pCO,. Clearly,
the values of pCOL g ieng Was higher than the ficld-measured surface
PCO; across the SSS range (26.85-36.67) used in this study, but such a
discrepancy was reduced at high §SS. This is because that the effect of
biological uptake of CO, is strong and has not been taken into account
yet, and at high SS5 the TA and DIC values were getting close to those of
the ocean endmember, thus OO, Gy e Valises were getting close to
the feldmeasured pC0Oy; The varation of the biological term
(APCOy ,) along with SSSin Fig. b demonstrated that the biological
CO, removal at low SSS§ was more intense than at high SSS as
ApCO3 g, could reach — 209 patm at low SSS. This is consistent with
the high pCOsgimiring values at bow salinity & shown in Fig 4a and
reported in the literature (Huang <t o, 2013, 20158),

The MeSAA-modeled pCO, (sum of pCOgsmeing 20d APCOzg4)
was compared with the field-measured pCO; in Fip de Generally the
maodeled pCO; followed the in situ pCO; varistions quite well at
§SS§ > 30 with RMSE of 22,03 jatm (5.59%), MB of ~ 1,32 patm and
MR of 0,998 {Toble 1), For S85 = 30, surface pCO; was strongly
overestimated with RMSE of 47,48 patm (13,72%), MB of 42.08 yatm
and MR of 1.121 (700 2), Stattsties for the whole SSS range used (n
this study showed a &* of 0.25, RMSE of 22,94 patm (5,91%), MB of ~
0.23 patm and MR of 1,001 (Table 1), The strong overestimation (n
surface pCO, at SSS = 30 (~ 7% of the northern GOM has such low
salinity, the statistics was derived based on & salinity study that has not
been published) was assumed to be caused elither by the variations in
the river endmember TA, and IHC,, which could have a larger influence
in the modeling of pOO, guniey 1t 10w 858, ar by the non-sufficiens
modeling of the biological removal of COy, Quantification of the effect
of the variations in TA, and DIC, in Section 5.1 demonstrated that the
overestimation in surface pCO; at S88 < 30 was mainly due to the
vanations in TAg and DIC, The histogram of the modeled pCO; re-
siduals in Fiy. Sc shows that 73.7% of the residuals were smaller than
the standard deviation of the observed pCO; ( + 26.43 patm),

Comparing with the results of previously published works (Lohsenz
and Cai, 200¢0 Lohrenz et al, 2010), the results from the MeSAA
showed significant improvement, where for the same pCO; ranges
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RMSE reduced from 50,2 patm in Lobenz amd Cal C2000) 10 22.94 jatm
in this smdy, Even though R* from the MeSAA was lower than in
Lohrene ef ol (2010, the results here are still encouraging as the study
region in [oboere of ol (20000 was much smaller and pCO, variation
was much larger than the study bere.

The spatial distribation of the MeSAA-predicted pOO, & shown in
Fig Sa, Compared with the in situ pCO; distribution (Fig \d), the
MeSAA model appeared to be able to regenerate the spatial pCO, pat-
terns, especially for the inshore.offshare pCO, gradient. The relatively
low pOO0y values (320-350 uatm) near the Mississippi River month and
in the east of the MARS as well as the relatively high pCO, values in the
west of the northern GOM were all predicted well. On the other hand,
the distribution of the pCO; residuals shown in iz b revealed that in

titssahip b the MeSAA smodeled pO0; risidualy in {c) and 5SS The genend linese

d that elther PCOgywiang € 2PCT03 440, may not capuure all the signals ia pCO, varkations ceused either by Rorecatal miving or by biological
were lised in [abde o

some locations (e.§., east of the northern GOM or to the east of 30'W)
surface pCO, was either overestimated or underestimated. Such a dis-
crepancy could be due to the rapid changes of the river plumes in re-
spanse to wind and coastal currents, which in tum influenced the
biological activities and therefore surface pCO.,. Clearly, the river-ocean
mixing model or the biological effect model did not capture such
changes very well, and in such a complex environment It is challenging
to model the surface pO0, with very high accuracy (e.g., RMSE <
10 pazm).

To further examine the possible causes of the relatively karge un-
certainties in the MeSAA-modeled surface pCO,, the relationships be.
tween the pCO, residuals and the environmental parameters (SST, SSS,
and CHL) were investigated. As shown in Fig. 4d, there was a general

Table 3
Performance statistics uf the MeSAA, Jocally mmed MeSAA, wnd the empincal regression models. The range of field meosnred OO, & 3161345170 govtm. ¥ refery to modeled pOO,
while X nefers 10 meanend pLO,
Methods [ RMSE  KMSE (%) ME (putm) M0 Nelatianship between Range of modeded N (# of
(patm) modeled and mensured pCo; #OO; (patm) data}
MeSAA Whaole 555 range 0z 22.94 5,91 - 0323 10m ¥ = 0.579X + 167 2 322,68-450,92 076
58 > %0 0 .o 259 - 132 00w ¥ =0A2X + 10 3266545093 649
555 = W - 742 4748 1972 208 iz ¥ = 055K + 1T 2L 684K 68 17
Locally wuned Whale 58§ range 078 12,30 314 o000 1,00 V=070 + 5 & 435.94-435,59 Lzdd
MeSAA 858 > %0 0re 1244 316 - 038 1,001 ¥ = 0NN 4 10T 3418543504 0659
855 = 0 ns? LX) 25 A Lm? ¥ = 00X 4 408 I8 440590 17
Fmpirical Maded develog Whole 583 084 10.5% n2 =000 oo ¥ = 0N + 4253 42901443582 38
Regressdon range
558 >0 053 10,40 03 oo 100 349.39-44382 m
SRS« 30 - 044 BB 5 -~ 356 00w 329.01-361.22 ?
Model validation  Whole 388 0% 10,08 273 - 02 100 Y= ONIAY + 7521 261144250 28
range
858 > W) nx 10,90 n - 008 LODOY V=X + S1A5-44250 wm
S« 036 LRE 72 -~ 802 008 ¥ = 0ASIX + 1IN J2611-964.00 1n
Baoth model Whole 555 084 10,66 2.68 - 010 1000 Vo= 00wy 4 AN s 326.11-445.82 e
developmont sed mnge
validution 55> 30 033 1054 267 ot Looy Vo= DAY 4 28T 400044382 65
SSE %30 048 nmn 319 -~ 448 00 ¥ = DASA + 100 326.11-364.03 17

n
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d pOOL) In the sorthern GOM, med the hissograms of the 200,

linear refationship between the pCO; residuals and SSS. This Indicated
that, although SSS could modulate the biological term ApCOsgsa
(Fly 4b) and SS§ was also used In the parameterization of
PO gtmecimg. the effect of 5SS In the MeSAA-modeled pCO; was sl
not sufficiently expressed. ‘The relationship between pCOspre, and
CHL in Eq. (1) assumed that variations in the normatized pCO, were
dominated by the biological effects, However, in reality other possible
factors such as the dvnamic effects of mesascale eddies, Loop Current,
and vertical mixing of surface pCO., could alsa play a role, as shown in
the data scattering in Iy 2d. Furthermore, the effects of the bialogical
activities may wark differently in the northern GOM coastal waters
from the GOM open waters, thus direct application of the biological
relationship develaped from the latter to the former may be question-
able, requiring modification of the MeSAA.

4.2, Locally wned MeSAA

Fig e shows the comparison between modeled ApCOa g, using
the locally tuned MeSAA and the residuals {(ApCO,) In the field-mea-
sured pCO; after subtracting the horfzontal mixing term pCO2 ey
AL SSS < 35, the model performed reasonably well, but at 858 = 35 the
bological removal of surface CO; appeared to be too strong, The
comparisan between the modeled pOO; (from the locally tuned MeSAA)
and field-measured pCO; In Vg od also showed similar patterns for
data with 585 = 35 and SSS = 35,

Statistically (1uble 2), the locally tuned MeSAA showed better
performance than the original MeSAA in estimating surface pCO, re-
gardless of the S5S range considered. At 855 < 30, the mean bias in the
estimated pCO, was 5.70 patm, possibly due to variations in the TA,
and DIC,, parameterizations, yet such a positive bias was much smaller
than that of the original MeSAA (ME = 42.08 patm) due to different
ways in modeling the biological term ApCOyuy,,- Such a greatly re-
duced underestimation in sucface pCO, at 885 < 30 indicated that,
although the modeled result of Eq. (10) (based on iy 6a and 6b) was

regarded as the biological term ApCO 2y, It may also include some
PCO; residuals in the mixing term that was not fully accounted for in
the quantification of pPCO gy OF [n other weak but non-ignorable
processes (e.g., vertical mixing), all of which were Included Implicitly
in the empirical coefficlents of Eq. (101, The histogram of the pCO,
residuals {1y 5f) shows that 97.3% of the residuals were smalber than
the standard deviation of the observed pCO; [ 4 26,43 patm), which
also indicated that the locally tuned MeSAA had improved performance
comparing to the original MeSAA.

Flgs od and Se show the spatial distributions of surface pCO, and
PCO; residuals derived from the Jecally tuned MeSAA model, Compared
with the field-measured pOQO, distributions, the spatial distributions
along the inshore-offshore gradient showed similar p s, which also
showed more detailed features and higher accuracies than from the
ariginal MeSAA model. In addition, the relatively low pCO, values near
the river mouth and in the east of the narthern GOM as well as the
relatively high pCO, values in the west of the northern GOM were all
revealed clearly. Compared with the pCO; residual distributions from
the original MeSAA, the residual distributions from the locally tuned
MeSAA in Fig. Se showed lower unc inties, suggesting improved
model performance.

4.3, Empirical regression

Fiin “a=7¢ show the relationships between surface pCO, and en-
vironmental variables (CHL, 888 and SST), and 1 g= 7d-"f show the
multi-variate regression moded (Eq. (1)) for the pCO, prediction. For
the model development (+1z 7d), RMSE was 10.35 patm (2.62%), with
a R* of 0,84, MB of — 0,00 patm and MR of 1.001, There was negligible
averestimation at 55§ > 30 (RMSE = 10.40 patm (2.63%), MB =
0.07 patm, and MR = 1.001) and slight underestimation at S8 < 30
(RMSE = 8.80 patm (2.51%), MB = — 3.58 patm, al MR = 0.990).
Vi, 7e shows the model validation with data not used in the model
training. Performance measures are similar to those for the model
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training, with an RMSE of 10.98 patm (2.73%), R* of 0.83, MB of —
0.21 patm and MR of 1.000. RMSE for the combined datasets (both
model development and model validation) was 10,66 patm (2.68%),
with an R* of 0.84, MB of — 0.10 patm, and MR of 1.000 (Tible 3}, The
histogram of residuals for the combined datasets (715 5) shows that
97.99% of the residuals were smaller than the standard deviation of the
observed pCO; ( = 26.43 patm).

Flue Sgoand Shshow the spatial distribution of empirically-modeled
surface pOO, and the pCO, residuals. Similar to those from the locally
tuned MeSAA, the spatial patterns along the inshore-offshore gradient
agreed with those decermined from In stto messurements, and they also
showed more detailed features than those provided by the original
MeSAA,

In summary, the emplrical regression method showed slightly better
performance than the Jocally tuned MeSAA, and both models showed
Improvements aver the original MeSAA.

5. Discussion

In this section, the sensitivities of the mechanistic modeds (original
MeSAA and locally tuned MeSAA) and the empirical model (empirical
regression) to the empirical coefficients and uncertainties in the model
Inputs are analyzed, and strengths and weaknesses of cach model as
well as the controls of surface pQO, in summertime northern GOM are
discussed.

5.1, Sensiivity analysis of the MeSAA

5.1.1. Model sensittvity to empirical coefficients

The parameterization of the MeSAA included two types of empiri-
cally derived coefficients: the first included the TA and DIC values of
the river and ocean endmembers, which affected the horizontal mixing
term pOO.sgyiamisirg: And the second included the biological coeffickent of
biological activities to surface pCO,, which influenced the biological
term ApCO s e

As described in Secuon 2.1, the variation of the river erxlmember
TA; was 1935.6-2894.4 umol/kg, about 20% lower or higher than the
TA, value (2420 umol/kg) used in this stixly. Therefore, in order to

evaluate the model sensitivity to changes in TA, and DIC,, river end-
member TA; was varied by + 20% with the assumption that DIC, was
about 30 pumol/kg higher than TA,, while all other parameters re-
mained unchanged. In addition, TA and DIC values for the ocean end.
member were fixed because the Loop Current water was stable.

Visual inspection of Fig #a and 2b indicste that the MeSAA was
maore sensitive to changes in TA, and DIC, a1 lower SSS. For §SS = 30, 8
207% Increase In TA, (Fly. 5a) produced about 47,60 patm higher pCO,,
while for 5SS > 30 the same 20% increase in TAy and DIC, caused a
much smaller change (MB = B.15 patm) in the predicted pCO;. A si-
milar disparity in the model sensitivity was observed for & 207 de-
crease In TAq when data were partitioned to SS§ = 30 and 5SS > 30
(Fin 4b), The detailed statistics In Tuhle 4 also suggested that the
MeSAA was more seasitive to TAg and DIC, for low-SSS (SS5 = 30)
waters than for high-SSS (SSS > 30) waters, Therefore, the over-
estimation In the MeSAA-modeded pCO; at $88 <= 30 In Secvion 400
could be attributed to the varlations In river endmember TA; and DIC,.
However, on the other hand, based on the statistics over the whole 58§
range used in this study, the uncertainties In the MeSAA-predicted pCO,
due to changes in TA, and DIC,, were within the RMSE uncertainties of
the MeSAA.

Similar to the sensitivity analysis of the MeSAA to TAg and DIC,, to
examine the effect of the variations in the biological coefficient (B =
96.04) on the MeSAA-modeled pOO,, B was varied by = 20%, As shown
in Figs S and 4d and Toble 4, a 20% increase (decrease) in B produced
about — 22,51 patm (22,51 patm) lower (higher) pCO,, with bigger
changes in modeled pCO; at lower 5SS (= 30). Either with a 20% in-
crease or decrease in B, in ench case, the RMSE at the whole SSS range,
S§S > 30, and SSS = 30 were 23.38 patm, 22.91 patm and 38.25 patm,
respectively. Compared with the statistics of the MeSAA model jtself,
these results indicate that the MeSAA was sensitive to the biological
coefficient B, and the sensitivity d d with increasing SSS.

-

5.1.2. Model sensitivity to envirorumental parameters

Field SST, SSS, and satellite CHL were used during the development

ofmemmcrdermbenuundmumlbwﬂwMMM&l
i tu thiese fnpoit variables, & itivity analys) AR,
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unchanged, Considering the typlcal uncertaintles of satellite-derived
SST and CHL, SST was varled by = 1°C, §85 by =1, and CHL
by + 35%. Note that although field-measured SSS was used in the
maodel due to the lack of satellite-derived high-resolution SSS, in the
future such $8S could be derived from ocean color data with a possible
uncertainty of = 1, The model response results are shown in
Fige fe-4j, with statistics such as RMSE, MR, and MB listed in Tuble 1,

Variations in SST and SSS would only affect the horizontal mixing
term pCOsaminieg Of the MeSAA, As shown in Figs se—sh, the sensi-
tivities of the MeSAA to SST and SSS changes are similar, A 1°C in-
crease produced higher pCO; (MB = 19,65 yatm, 1y “e), and a 1 °C
decrease produced lower pCO; (MB = — 19.01 gatm, 11 5. Like-
wise, a1 I } in SS§ produced lower (higher} pCO, (MB
= 10,00 gatm or — 10.64 patm, Figs. “g and 9h), with slightly
higher pCO, decrease (increase) for SSS < 30 than for SSS > 30. These
results suggest that the MeSAA is more sensitive to SST changes than to
SSS changes.

Variations in CHL would only infloence the biological term
APCO 3t 0F the MeSAA. Tiys. §i and G demeastrate that the MeSAA
had the same sensitivity to CHL changes at different 5SS values, with
MB of — 12.52 yatm and 17.97 patm for 35% increase and decrease in

CHL, respectively,

In short, the sensitivity analysts showed that pCO; variations caused
by the assumed changes In both the model coefficients and Input en-
vironmental variables were all within or close to the RMSE un-
certaloties of the MeSAA model itself, although the model showed re-
latively higher sensitivity to the biological coefficient B and SST. Thus,
unless the uncertainties In these model Inputs are systematic biases
instead of mandom noise - which is unlikely according to the validation
result of satellite data prodacts - these uncertainties would not have a
significant influence on the MeSAA-predicted pOO; when large regions
are considered as a whole.

5.2. Sensitivity analysis of the locally mned MeSAA

Based on the parameterizations of the locally twned MeSAA In
Section 4.2, the sensitivities of the locally tuned MeSAA to TA, and
DIC, and 5T were the same as the MeSAA, Therefore, only sensitivities
of the locally tuned MeSAA to 5SS and CHL were analyzed.

Fige. Yn and b show the sensitivity of the locally tuned MeSAA to
S8, with statistics shown in Juble &, Note that since $88 was included
in both the physical mixing term pOOyy, janisirg @nd the biological term
ApCO 25040 In the locally tuned MeSAA, the variation in 5SS would in.
fluence both terms. As o result, the locally tuned MeSAA showed the
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v anadysic of the MeSAA, locally mmond MeSAA, and the empirical negresson models Mmhuy.wﬁmamdimu---mﬁnﬂ;
hmudwdmmdbylwmlnummnmkmmmnﬂnmmmd RMSE, MR anid MB wern cdealatnd by g the

d pO0; with the

cxigamally-peedicted 00, Note that the stntistics of the semitivities of the Socally tuned MeSAA 10 TAs and SST are the same ws hose of the driginsl MeSAA hocause TA, snd SST imly

affert pLO g ymirine and both models kad the ssme calculation of pCOgyeiie

Cones RMSE (uatm)® RMISE (%) MB (uatm)’ MR
Whale SSS range 1521 355 9.15 024
585> 30 13.35 348 515 0
420% in T. SSS<30 4942 1254 4760 121
Whole SSS rage 459 356 897 0977
S55>30 11 342 802 979
-20% in TA, S85<30 47.80 1213 T 883
Whole SSS range 3538 03 223 a3
S§S-130 2201 51 22 943
420% in B S§S <30 38.25 54 3704 905
Whole SSS range 2338 05 2 057
S§5>30 23,01 93 73 057
20% in B SSS<30 38.25 54 7.0 095
Wholc SSS range | 19.68 | 1968 | 2186 | 497 | 497 | 53¢ 965 | 497 | 2002 S0 | 497 | 1052
§55 > 30 361 _| 1961 | 2210 | 495 | 49 A 5358 | 495 | 2120 | 1049 | 295 | 1.083 |
+1°Cin SST S8S <30 304 | 2304 | 828 | 591 | 391 | 233 | 2244 | 391 | 684 | 1057 | 591 | L9
Whole SSS range_|_10405_| 1905 | 1662 | 481 | 481 | 405 | 1901 | 481 | -1538 | 0952 | 481 | 0962
S§5 -3 1897 | 1897 | 1682 | 439 | 479 | 409 | -189¢ | 479 | 1575 | 0952 | 479 | 0961
-1°C in SST SSS =3 2240 | 2240 | 456 | 572 | 592 | 127 | 2172 | S32 | 130 | 0045 | 572 | 0.997
Whole SSS range | 1008 | 9.6 | 841 | 256 | 241 | 211 | 1000 | 9.5 04| 0975 | 1024 | 1.020
5530 995 | 972 | 838 | 252 | 24 09| 988 | 966 01| 0975 | 1024 | 1.020
+1in 88§ SSS <30 372 | 549 | 995 | 335 | 134 | 289 | 1437 | S28 | 938 | 0968 | 1015 | 1.027 |
WholeSSSrange | 1073 | 901 | 1038 | 272 | 225 | 250 | 1064 | K90 | 10038 | 1027 | 0978 | 0.978
S8 10 059 | 910 | 1030 | 268 | 227 | 23 052 | 902 | 1000 | 1027 | 0977 | 0973
-1in 888 555 <30 69 | 4% | 1195 | 400 | 138 | 34 520 | 434 | 1137 | 1030 | 098K | 0.967
Wholo SSS range | 1253 | 1409 | 370 7 | 027 | 094 | -1252 | 109 | 095 | 0.968 | 1.003 | 1.002
S§5>30 53| 1 | 367 6 | 027 | 0937 | 1252 | 109 07| 0968 | 1.003 | 1.003
438% i CHL | S55<10 90 | 112 | 499 | 330 | 031 | 143 | 1253 | 100 | 305 | 0968 | 1003 | 0.989
Whole SSSrange | 1798 | 156 | 765 | 454 39 | 190 | 1797 | -155 | -567 | 1.045 | 0.995 | 0.986 |
585 >30 .90 6 | 772 | 454 | 039 | 191 | 1797 | 155 | 585 | 1045 | 0.99 | 098
-35% in CHL S§5=130 S0 | 339 | 474 | 045 | 126 | 1797 | 155 | 156 | 1086 | 0.996 | Lo

mmnmwmmnmnmummmnmmmm gpirical i dy.

opposite sensitivity effect to SSS, comparing to the original MeSAA.
Specifically, an increase (decrease) of 1.0 in SSS produced higher
(lower) pOOy (MB = 9.55 patm or — 8.90 patm), with slightly higher
pOO, increases (decreases) for SSS > 30 than for S§S =< 30.

As shown in ©lg S and 9d and Tahle 4, the locally tuned MeSAA
showed little sensitivity to changes in CHL. With a 35% increase (de-
crease) in CHL, pCO; was modeled to be 1.09 patm {— 1.55 patm)
higher (lower) than the originally-modeled pCO,.

5.3, Sensitivity analysis of the empirical regression

Similar 1o the sensitivity analysis of the MeSAA and the locally
tuned MeSAA, the performance of the emplrical model was alkso eval-
uared against changes In the Input parameters, with SST, §5S, and CHL
varled by & 17°C, = 1, and + 35%, respectively. The results are pre-
sented In Fig. 10 and Table 4,

Flgs 10a and 10b Indicate that the empirical model was more
sensitive to changes In S5T at high SSS (> 30) than at Jow 88§ (= 30).
A 1 °Cincrease resulted in MB of 21,29 patm for $58 > 30, but only led
to M8 of 6.84 gatm for $SS = 30. Similarly, a 1°C decrease in SST
resulted in MB of — 15.75 patm for $SS > 30 but oaly — 1.30 gatm for
S8 = 30, The sensitivity to 858 changes is the opposite, with slightly
higher sensitivity for the dota group with 858 < 30. A | increase in 858
resulted in MB of 8,01 patm in the predicted pCO; for §55 > 30 but MB
of 9,38 patm for $S§ = 30 (1) 10c). A 1 decrease in 858 resulted in MB
of — 10.00 patm Ffor SSS > 30 but MB of — 11.37 patm for §5S < 30
(Fig. 10d),

The empirical model is not to CHL changes over the
modeled data range. With either 35% increase or 35% decrease in CHL,
the predicted pOO, did not show moch difference from the original

predictions (Fiye 10e and 10f), where the MB of these two experiments
were 0.95 patm and — 5.67 patm, respectively.

In summary, the predicted pCO; variations induced by a 1 change in
SSS and a 35% change in CHL were all within or close to the RMSE of
the empirical model. Only in the case of SST changes of 1 °C did the

deled pCO; variati d the RMSE of the model. In general the
empirical model was more sensitive to SST and SSS than to CHL.
Considering the combined effects of uncertainties in the satellite data
products axd the sensitivity test resulis, uncertainties in the empirically
modeled pOO; should be between 10.66 and 21,86 patm for typlical data
ranges. However, these uncertainties represent RMSE values for in-
dividual data points instead of systematic blases. When the data are
averaged over large scales in either space or time, the uncertainties in
the mean products should be much smaller,

5.4, Mechanistic or empirical approach

Statistically, the locally tuned MeSAA (R® < 078,
RMSE = 12,36 patm, MB = 0.00 patm, and MR = 1.001) and the em-
pirical regression model (R® = 0,84, AMSE = 10.66 patm, MB = —
0.10 patm, and MR = 1.000} showed similar but better performance
than the original MeSAA model (R? = 0.25, RMSE = 22.94 patm, MB
= — 0.23 patm, and MR = 1.001). This is also revealed in the scat-
terplots for these three models (4130 4c, 6d, and 7). Similarly, although
all these three models reproduced the spatial distribution patterns of
PCO; well, the locally tuned MeSAA and the empirical regression
models slwvwd more detall; and improved accuracy (1'ig. ),

The h d that the MeSAA model was sensi-
tive to both the emplriul coefficients (river endmember TA,, and DIC,,
and biological coefficient B) and the three environmental variables
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with the
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(SST, SS§, CHL), and the locally tuned MeSAA was sensitive to the river
endmember TA; and DIC,, and sensitive to SST and SSS but not to CHL.
The MeSAA was more sensitive to the blolopcul ooelﬁmm B while the
locally tuned MeSAA and the irical reg s were more
sensitive to SST. All thres

lade dh 1 Py Jatioas b

4. and the nowly-modek 1z %o each set of parameterizacion

in the nocthern GOM in recent studies (10 «f 0l 2003, Del Casilio and
Miller, 2008; lnhmu et al., AHU Canmizzoru et al., 20135) indicated
thar empirical g may not be sufficient to derive o
;enen\l rehtimship applltahle to the whole northern GOM. More ad-
d empirical techniques such as neural network or support vector

surface pC0Oy, and SST, mmmmmmm
with SSS and CHL while the locally tuned MeSAA and the empirical
ion models showed the opposite signs in the same correlations.
Hwenr. all these uncertainties in the predicted surface pCO, are
within the model uncertainties except for the case of SST in the em-
pirical model,

Overall, while the empirical regression mocled resulted in slightly
better performance than the locally tuned MeSAA in predicting surface
POy, interpretation of the moded drivers is more straightforward with
the latter, as both physical and biological forcing in the latter are ex-
plicitly expressed. Indeed, both the original MeSAA and the Jocally-
tuned-MeSAA showed encouraging results in terms of model accuracy
and physical interpretation over the northern GOM, However, currently
oaly an empirical relationship was used to quantify the blological term
in both models, thus requiring further improvement (n quantifying the
bological effect In & more meaningful way. In addition, when ex-
tending the MeSAA approach to other seasons (the current study was
oaly conducted for summertime) in the northern GOM or 10 other si-
milar systems, the Jocally-tuned-MeSAA may be more practical than the
original MeSAA because of local tuning in determining the biological
effect. However, a major limitation in both the ariginal MeSAA and the
locally tuned MeSAA that implemented in this study Is that one of the
model inputs, namely 85, is from the Reld measurements due to lack of
community-accepted algorithms to estimate $88 from high-resolution
(1.km) satellite measurements. This deficiency in remote sensing al-
gorithm makes it difficult to generate synoptic maps using satellite data
alone, Clearly, an immediate peed is to develop and validate a
sensing SSS algorithm in arder to derive surface pOO, maps using the
established models bere. The changing relationship between SSS and
the sbsarption coefficient of colored dissolved organic matter (CDOM)

machine may be tried instead (e.g, Chen and Hu, 2017), In the end,
because data from upwelling cases were excluded in all three models in
arder ta satisfy the conditions in the original MeSAA approach (sum-.
mertime East China Sea where river-ocean mixing dominates the pro-
cesses), the models are not expected o work in regions with strong
upwelling. Indeed, if all three models were to be applied to the up-
welling case shown in iy lc (July 2009 around the Mississippi River
delta), the predicted pCO; would show large deviations from the field-
measured pCO,, with RMSE of 103.60-166.3] patm. However, if data
fram this event were used together with all other data during training of
the empirical regression model, the result would show significant lm-
provement (n the predicted pO0., with RMSE of 14.75 patm and R* of
0,79 for the entire dataset, and RMSE of 63,17 patm for the upwelling
data (N = 13). Clearly, the applicability of the empirical regression
model strongly depends on the data used in the model tralning, and
more fiekd data collected under upwelling cases are required to further
wune the empirical regression model far general application with high
confidence.

5.5, Controls of surface pCO, in the summertime novthern GOM

While the focus of the paper is on comparison of models in est-
mating surface pCO, in order to provide guidance on future model se-
Jection when applying to remote sensing data, understanding of model
uncertainties requires knowledge of the various controlling mechan-
isms in affecting surface pCOy, As described in Secton |, surface pOOy
can be affected by ocean mixing (both horizontal and vertical), biclo-
gical activities, thermodynamics, and airsea exchange. [n summertime
northern GOM, horizontal river-ocean mixing, biological activities and
thermodynamics are the dominant factors in influencing surface pC0,,
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and all these three factors were included in the parameterization of the driving the model inties may be ace d for in the empirical

original and Jocally tuned MeSAA. However, vertical mixing and air-sea  coefficients, the physical and biological effect on the surface pCO; can

exchange are also likely to cause some variations in surface pCO,  only be explicitly | d by the mechanistic model. Additionaily,

especially during and after extreme events (e.g., hurricanes, storms). the irical ion approach could be further tuned for regions

Such processes were not considered in the parameterization of the
MeSAA. On the other hand, in the parameterization of the MeSAA,
conservative river-ocean mixing was nssumed first, and the blological
effect was then removed from the mixing teem to derive the modeled
surface pCOy. These two processes may not occur on the same time
scale and/or spatial scale, causing large uncertainties in the modeded
surface pCO;,

6. Conclusion

Using extensive field and satellite data, several models to predict
surface pCO, using SST, §SS, and CHL were thoroughly tested over the
northern GOM, with the ultimate goal of understanding model perfor-
mance and sensitivity to uncertainties in the input variables, These
include a recently established mechanistic model (i.e., MeSAA) ori-
ginally developed for the East China Sea, a locally tuned MeSAA with
local tuning to determine the biological effect, and a statistical em.
pirical model. While the empirical moded led to slightly better perfor.
mance than the locally tuned MeSAA because the unknown factors

with umlllng.msmdy also suggests future directions in model de-
velopment as well as in satellite-based SSS algorithms in order to derive
accurate surface pCO; maps for river<lominated coastal reglons. For
example, Instead of using a biological term determined from open-
ocean waters a locally tuned biological term (ApCO;gu.) may be vesd
In the MeSAA t account for pCO; residuals (n the hortzontal mixing
and biological processes as well as other processes (e.g., vertical
mixing).
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APPENDIX C:
ESTIMATING SEA SURFACE SALINITY IN THE NORTHERN GULF OF MEXICO

FROM SATELLITE OCEAN COLOR MEASUREMENTS

Chen, S., and Hu, C. (2017b). Estimating sea surface salinity in the northern Gulf of Mexico
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Estimating sea surface salinity in the northern Gulf of Mexico from satellite
ocean color measurements
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Shuangling Chen, Chuanmin Hu'
College of Marine Sciescr, Undwralty of Soudh Monids, 140 Sovvnh Aresue, Soath, St Prtenbwy, £L USA 33701

ARTICLE INFO ABSTRACT

Sea surface salinity (S5S) is an imspartant parumeter to characterize physical and bsogeochemscal g yet
its remote estimation in coastal waters bas been difficult b satellive Jesigred to " 58S Inck
MOMS sufficient resolution and coversge, and bigher-resolution ocesn color messurements. soffer from optical and
Sﬂl;"::“ biogeochemical complesity when used to estimate SSS. in the nocthern Gulf of Mexico (GOM), this challenge is
::nm:& . i through " and ive tests in . Specifically, using
Neurn! network ive SSS & tected by many mqnmln;>ll)ymnnduomsl“ - Resaluti wing
Spectroradiometer) and SeaWiFs (Sea-Viewing Wide Field-of-View Sensor) esti d remote | 4l
(Rrs) at 412, 443, 488 (450), 555, and 667 (670) nm and sen surface temperature (SST), nmwﬂwpcmepmm
neural metwork-based (MPNN) S5S model has been developed and validated with a spatial resolution of —1 km.
The MENN was selected over many other empirkal approaches such as principl P ly
Iti-noali egression (MNR), decision tree, rand ﬁxsl.nnd,, ng vector machi
mnm“mmm&lPNNWWDdbynMpwdm b chnigue with 1 herg
and 4 nnovemll fi
qmmmmna1zmmmmamxdd¢mmmm')-om.mmmulm)-o.o and mean
mtio (MR) = 1.0 for SSS ranging between —1 aad —37 (¥ = 3640). Validotion using an independent dataset
showed a RMSE of 1.1, MB of 0.0, and MR of 1.0 for $SS ranging between —27 and —37 (N = 412). The model
Mlhtumyndparmnedndonhubemtemdmthemlsulmyptﬂmhnfnhynmunlmﬂnﬂdukms
Bendmgiomnndlnthedﬂmnmmm\uplmwlm factory g by d tn ench case,
with Muariusderived 555 maps (110-km resolutian] showsd similar ag m
Mmmummednbme,buuhewlkm & SSS maps Jod mare finer-scale featsres as
well as sabinicy gradients In coastal waters. The sensitivizy of the model 1o realistic model Inpat errors in sasellite-
derived SST and Rrs was also th ghly Ined, with in the model.derived S5S being 2l
ways < 1 for 85 > 30. The bid 1! and y test all ind) d the rob of
lheMl‘NNmnddtnnﬂmﬁngSﬁhmﬂmﬂl,mmmnduﬂdmﬂumsmmemmmt
Thus, the model provided a basls for ge g pear real-time 1-km vesolution 5SS mags from satellite mea-
sucements, However, the model showed Hmitatians when applied to regians with koown algal blooms or wp-
wellieg /s they both led 10 low Res in the blue bonds thas muy be falsely meoognimd as caused by low 5SS,

Keywond
Se suface salinity

1. Introduction Falacios et al,, 2009%; Deviin ¢1 al,, 2015; Homer-Devine et al, mla

Yang et al, 2015). Further, S8 is an imp in g the

1.1, Challengr in mapping sea surface salinity of coastal waters

Sea surface salinity (SS8) is an important parameter in under-
standing many physical and biogeochemical processes in coastal waters
(Fennel et al, 2011; Xue et al,, 2013), SSS data is used in support of
studies examining the mixing between riverine freshwater and offshore
oceanic water and changes in other water properties (Hu 1 1l 2004

* Cotresposding author.
Ematl address” hocitied edu (C. Hul

Bt st dulorg /10 TOD ) e 201 04 004
Revwived S Fibrary 2017; Reowsved in reviod foem 17 July 2017, Acoepted 2 Saptends= 2017
O004.4257/ © 2017 Pubished by Elsevier oo,

pathway of the riwrlne-delivund tesrestrial aubmme (e.g wgunlc and
inorganic carbon, ients) into the ocean, as well as examining the
intensity of stratification and studying variations in water’s optical

propertics, hypoxia, and algal blooms in 1 ins (Rahal
et al, 1996, 2002; Cannizzaro et al, 2013; Wn\kmx et al, 2014;
O'Connor ¢t al., 2016; Le et al., 2016).

However, obtaining SS§ st synoptic scales with freqg coverage in
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coastal waters has proved difficult due 10 inndequate ship-based mea-
surements (that lack of appropriate resalutions) or failures in satellite
Nm:ummdmﬂmmmwmusmeﬂsummw
on g and designed to “measure” §SS from
space, are me ESA SMOS (the Swil Maisture and Ocean Salinity) and
NASA Aquarius/SAC-D. Yet the coarse spatial resolution (30-100 km)
and low revisit frequency (3 days or mare), along with the issue of land
coatamination, limit their use in observing the dynamic variations in
SSS in coastal waters (Koblinsky et al.. 2003%; Lagerioef et al., 2008; Fant
el al, 2010; Keer 1 al,, 2010).

Recent advances in ocean color remote sensing have shown poten-
tials in synoptic and frequent mapping of S8S (Wang et al., 2007. Ahn
et al, 2008; Palacios et ol, 2009; Marghany and Hashim, 2011;
Uriguhirt et al, 2012; Bad et al,, 2013; Geiger ef al, 2013; Qing et al,,

2013 Vandermeulen of al., 2014; Zboo ('l al, 2017), In these studies,
555 was modeled from apparent properties (AOPs) such as
spectral sensing ref) (Res, se- ), inherent oplical prop-

esties (10Ps) such as absorption coefficlent, or other sateflite parameters
such as Sea Surface Temperature (SST, 'C) and chlorophyll-a coa-
centrations (CHL, mg m ~ 7). Regardless of the method, the underlying
principle Is that colored dissolved organic matter (CDOM) Is a good
tracer of $58 in coastal oceans (Vodaces et al 1997, Hu et ul, 2000
Coblo or al, 2004; Del Vocchio and Blough, 2004), and CDOM ab-
sorption coefficient (acpos, M ') can be, at beast In theory, essimated
from ocean color measurements and then used to estimate 555 as-
suming conservative mixing for both (e, Siddom et al. 2001;
Johinson et al,, 2003; Chen and Gardner, 2004; Hong et al., 200% Guo
et al, 2007; Nowers and Hretr, 2008}, Indeed, In river-dominated
coastal reglons, CDOM mainly comes from tervestrial inputs through
river discharges and non-point source land runoff (Chester 1990
erwn et al., 2007). This plays a l:cy mole in determining the optical

{especially Rrs) of | ocean H , due to the
dimnn CDOM clumcterinia of each local river endmember and its
seasonality, the relationship between ey and SSS may vary in space
and time (Chen, 1999; Hu et al., 2003; Del Vecchio and Blough, 2004;
Bowers and Brest, 2008; Hai ee al,, 2013; Gedger et al,, 2013), making it
impossible to apply a locally designed 5SS algorithm to other regions.
Adding to this difficulty are the uncertainties in the satellite retrieved
Rrs and acpou: these uncertainties can cause a well-established, ship-
based 8.0y - S5§ relationship to become unreliable. Such difficulties
can be clearly seen from Fig. S1 in the supplemental materials for the
northern Gulf of Mexico when sstellite-derived acgon was used o es-
timate SSS. Thus, in general, mapping SSS in coastal waters from space
still represents a major challenge for the acean color research com-
munity,

1.2, Seudy region and objectives

The study reglon Is the northern Guif of Mexico (GOM) thar recelves
discharge from numerous rivers. The Mississippl River provides the
largest river discharge Into northern GOM, Ranking as the world's 8th
largest river In freshwater discharge and sediment delivery, the
Mississippi River system dralns 41% of the land In the United States
(Williman and Meade, 1983, About 70% of the river's flow drains
through the Jower Mississippl River into the GOM, with the remaining
30% delivered to the Atchafalaya basin, and finally into the GOM (I &
Army Corps of Engineers, 2008) forming the Mississippl/Atchafalaya
River system (MARS). In addition to the MARS, there are some smalles
rivers along the coast of the northern GOM, such as Suwannee, Pen-
sacola, and Apalachicola Rivers; these also play significant roles in af-
fecting the coastal water properties (Muttraw und Elder, 1984 Averent
et al, 1994; Murrell et al, 2002). With large seasonal loadings of
freshwater, inorganic and organic matters, and nutrients, from the
MARS and other rivers, the northern GOM maintains an active eco-
system with dynamic physical and hiogeachemical processes. Here, SSS
role in the physical mixing b the MARS and

plays an imp
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GOM open waters ( Xoe ez al, 2013), the hypoxia phenomenon induced
by intensified biological activities and vertical stratification (Wiseman
etal, 1997 Robalais et al,, 2002), and the distribution and variation of
the carbonate praperties such as total alkalinity (TA) and surface partial
pressure of COy (pCOy) (Yang et al, 2015; Chen et al., 2016).
Synoptic SSS estimation in the narthern GOM has been attempted in
several published studies. Using data from SMOS nnd Aquanus,
Fournier et ul. (2016) examined the Jand i
of S§S in the GOM. However, the mdywuhnnmdbythcmamspmﬂ
resolution {30-100 km) and lack of coverage in cosstal waters as a
result of sensor limitations. Based on total absorption coefficients at 486
and 551 nm derived from the SNPP-VIIRS (Suomi National Polar-or-
biting Parmership satetlite with the Visual Infrared Imaging Radiometer
Suite) measurements and 5SS measurements from several nearshore
stations, Vandesmenlen of al (2014) developed a simple SSS model
using linear regression between SSS and absorption difference. Due to
the dynamics and complexity of the northern GOM, only 65% of the
data tested with the model showed a 558 uncertainty of < 2; one pos-
sibility for this result is that the relationship between absorption dif-
ference and SSS may change In space and time. Indeed, although linear
relationships between 855 and acpom have been developed on a re-
glonal basis (Blough et al., 1993; Ahn ot al, 2008; Palacios et al., 2009
#al et 0l 2013), In the northern GOM the SS5-8cyyay relationship ap-
pears to be different in several studies (Hu et ok, 2000, Del Castillo and
Miller, 2008; Lohrenz et al, 2010). Such discrepancies indicate thas
unlike §58, COOM may not follow conservative mixing, and both COOM
production from phytoplankton degradation (Nelsan et al,, 1998, 2010,
Twardowski and Donaghay, 2001; Stedmon and Markager, 2005) and
CDOM photochemical bleaching (Chen and Gardoer, 2004) may con-
tribute to the variations in the SSS-acp redationship (Ded Vecchio and
Wough, 2004). Consequently, to date there has been no reliable model
to estimate SSS from ocean color measurements in this region.
Extensive SSS data have been collected from the northern GOM by
numerows groups and agencies. Acknowledging the limitations of SMOS
and Aquarius, lack of relisble ocean calor-based SSS models, the un.
stable SSS.acpoy relationship in the northern GOM, and high un-
certainties in satellite-derived acgony (Hu ot al, 2000; Le and Hi, 2013;
Manning et al., 2014), the goal of the p study is to add the
challenge of mapping SSS from cosan color measurements over the
optically complex northern GOM, with the following specific objectives:

1} Develop a relatively robust madel o estimate SSS at 1-km resolution
from ocean color measurements;

2) Quantify uncertainties in the estimated SSS through extensive eva.
luations under various oceanographic conditions {e.g., Mississippi-
Atchafalaya coastal region, Florida's Big Bend, and Mississippi River
plume) and through sensitivity studies;

3) Understand the Hmitations of this approach in order 10 determine its
applicabllity to time-serles data.

The paper Is stractured as follows. Field and satellite data are pre-
sented first, and optical characteristics of the waters with different SSS
ranges are analyzed. Secondly, methods In developing SSS models are
briefly reviewed, Finally, In the Hesules and Discoussion sections, the
tralned $5S model is statistically valldated and evaluated under dif-
ferent conditions, with model sensitivities to the model inputs analyzed
and model limitations investigated.

2. Data and methods

2.1, Dutasers
2.1.1, Field data

To assure 1gh spatial and temp cuvmge under all passible
oceanographic conditions and we iled all

publically available SSS data collected over the past Z)mn in the
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Table 1
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555 mesuremonts from difforent cesesech vessely and booy phitforss in the GOM, Theae S5 were collecind =t a depeh of = % m from sl sevaons. Onby & small poction of these
measiremments were Sounid 10 fave co-locried med comewrent [ = 6 h) satellito-dorived SST il s derta (last column). These $55 dets were usedd 1o develop the MPRN moded,

Comrespundizg crubw tracks are shows &= fiy L

Plaghoemn (Ship Bucy) Duta Yeur covered lurge of SS5 Range of 558 with R ¥ ol vl ¥ of chwervations with satching
st satellite dutn satelline datu

Wy Gy TAMU 19972000 155-30.9 222365 77N e

Y old oA 20062007 1.2-96.2 228965 9,346 60

LY Cape Hattvess CIRAC 2005-2010 00-57.2 1346366 2,704 215

IV Beown CORAC 20003, 2000-2007, 243367 I 490 26,908 1

20002010

M/ Lae Cowvan AUML 2008-211 LE 26.6-36.4 18,050 328

Asonymoes Waterrralt e 200020114 180-34.0 ne 0 i

AV Falkor TAMU 2002 453-38.9 35.8-200 0597 13

IV Pelican Coac 2m3 N.7-364 28,7-20.0 LR 2

IV Marous G Lasgseth LEDO 2003 $42-36.7 I63-36.5 ama s

LY Weathettirsd 1t uSP 2001203 0.2-58.0 26.2-960 96,249 444

BV Walton Smith CIAC 19982015 A.0-39.8 205380 71,686 194

G5 Explorer of the Seas CDAC 2002-0K7 2015 A38-36.6 A59-365 46,833 360

IV Gordos Gunler CIRAC 2008-2011.2014-2015  RA-368 28.5-%6.6 102,057 AL

Buoy 42013 Xoec 2000-2015 206-37.9 I35 57,063 &4
(27173'N, 82924'W)

Buoy 42,021 NOBC 200-2012 287-36.6 $27-59 2,286 58
(2831T°N, 83.306'W)

Buwy 42022 NDRC 2013-2015 289.37.3 345-363 15,826 £
(27 504N, 83.741°'W)

Buoy 42,006 ADBC 2006 359-36.2 36.0-362 328 3
(28500°N, 84.517W)

Buoy crtal Xoec 20112015 01389 174 7722 1
(30308'N, S8.180°W)

Buoy Ikt AnBc 2009-2M4 fd-9.4 30.7-35.1 47,589 3
(4S8N, B0826'W)

Buoy mblal NODRC 2006-2015 0.1-27.6 L4248 38,969 a7
(30 437N, B2011W)

Buoy mir) NOBC 20062010 75372 33s 30,353 1
(25.01'N, B0376'W)

Huy ComiMs [30°N, CoAc 2009, 2011, 20132014 140356 221-356 4467 3
oW

Totad - 1957-2m5 00396 1.4.380 798,766 3,640

AOML: Athantic 0% hick fogical Lak y: CIMAC: Carbon Déoxide Information Anafyss Crater; FWG: Flonids Prdh and 'Wikdlife Conservanion Commisdom LEDO:

Lusmont-Debeny Eath Obseryisoey, IDBCNM mmﬂlmmm TAMU. Tesas A& M University; USF: Usivessity of South Flockda.

northern GOM. These include two data types: those collected from sy-
noptic cruise surveys, and those from fixed-location buoys. Tables | amd
2 present a general description of the data source, data volume, time
span, and data range for each datasel. These data cover all seasons. The
data In Table | were vsed to develop the $SS model, while the data in
Table 2 (independent from those (n Table 1) were used to evaluate the
5SS model. Collectively these data represent the most complete dataset
far the northerm GOM,

In Table 1 (model development), the SSS data (collected between
1997 and 2015) ronged between 0.0 and 39.8. Ship-based underway
585 data were obtained from the databases of Carbon Dioxide In-
formation Analysis Center (CDIAC), NOAA Atlantle Oceanographic 8
Meseorological Laboratory {AOML), Texas A& M University (TAMU),
Lamont-Doherty Earth Observatory (LEDO), and University of South
Florida (USF). The data were collected by ¢h groups
funded by different agencies. For example, between 1997 and 2000, SSS
was collected by the Northeastern GOM (NEGOM) program funded by
the Bureau of Ocean Energy Management (BOEM, formerly known as
Minerals Management Service) and archived at TAMU, B 2011
and 2013, SSS was collected by the CIMAGE consortium funded by the
GOM Research Initintive, with data archived at USF.

Typically, ship-based SSS data were collected at a depth of =5m
using a CTD (SBE-21 or SDE-SB oc SBE-45, Seabird Inc., USA, YSI 6600)
integrated in the shipk i flow-th h v with a
mwmmmﬁmﬂmr?mmdmumnquf&ﬂﬁ.ssm
series from CDIAC and NOAA Natioaal Data Buoy Center (NDBC) were
collected at a depth of 3 m wing & CTD (SBE MicroCAT C-T Recorder,
or SBE 37-IM MicroCAT), with a measurement interval of ~3hor <1 h

"7

and an sccuracy of 0.02 It is difficult 10 present each dataset in detailed
graphical format, but the full cruise tracks with color-coded SSS values
are shown I Fig la, with over 11,000 358 measurements In each
month.

Similar to Table 1, Toble 2 lists the varlous data sources of field SSS
measurements that were used for independent model evaluation under
differing conditions. Specifically, for a general evaluation of the de-
veloped SS§ model, 558 data collected at discrete stations were ob-
ained from the NOAA Natlonal Centers for Environmental Information
(NCEI) and Florida Fish and Wildlife Conservation Commission's (FWC)
Fish and Wildlife Research Institute (FWRI), These S5S data were col-
lected In 2010 and 2014, ranging between 3.8 and 37.5, To test the
madel performance in the Mississippi-Atchafalaya coastal region, un-
derway S85 measurements from two crulses (GMO606 and GM1003)
were obtained from CIIAC; these SS8S data were collected in June 2006
and March 2010 and ranged between 0,02 and 36.62, To examine the
madel perfarmance in the Florida's Big Bend region, S8 data collected
at di ions were obtained from NOAA NCEI and FWC; these
data were collected in 20140, 2011 and 2014, ranging between 11.4 and
36.4. To evaluate the model performance in quantifying SSS in the
Mississippi river plumes, discrete 555 measurements fram USF, and
underway SSS from cruise WS15234 fram CDHAC, were compiled: these
SSS data were collected in Aug. and Sep. 2015, ranging between 29,1
and 36.4, To test the model performance in deriving 5SS time-series at
fixed locations, SSS time-series data from three buoys (“crtal”,
"42022", and “CoastMS™) were obtained from NDBC and CDIAC. 5SS
from buoy “crtal”™ were collected between 2011 and 2015, ranging
between 1.0 and 30.1; SSS from buoy “42022" were collected between
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Table 2
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55 measuroments waed to evihisrnte the MPNN SSS moded under different conditions. Theye $55 were colloctind s s depth of = S m from ol seasoes. The specific prarpose of each datreat
annceated in dold ialic font, Caly 3 =mal portson of thew mesurements were found 0o have co-locred amid concurmnt ( = 24 h) MODES S5T and By Sata (lant codemni. Corresponiding
ensise Iracke 38 ench case are dhown in G 110 Note that the time-series SS§ datn frum booys “crtal ™, “42002" s “CoanaMS” shosn (0 inbics below woro mol weed in model

dervmlopment.
Project cruse 100 Duits Lute Datu type  Haoge of S5 Raunge of 558 with # of olmervations ¥ of obwervations with matctusy
ERCRY matching sasellie ain sutedlite data
Purpase To condurt o genernl vedidation of the MPNN mode!
Deepamer Hortznn NCEI Apr<Oict, 2000 Disrone 18367 1206 Lare =3
Supgart
SEAMAY A Oct, 2004 Discrete 290-3610 34340 158 ”
SEAMAP e Jun, 014 Diacrete 24.3-375 26.8-37.0 178 "
Total - - - AR-07 S 268570 1008 412
Purpose To test the model performance (n the MARS region
GMOG06 CAC Jun, 2006 Contlreous 0.7.36.2 22.6-36.1 5938 3789
aMmions COIAC Mar, 2010 Continesus  0.0-366 30264 7811 3345
Total - - - a-a0s A0-36.0 13749 7134
Purpase To tist the madel performance in the Méniipi River plumes
DERPEND LSF Aug, N5 Dbwcrote W1-KA 315363 22 3
WS515234 COIAC Sep, 2015 Contimeous  30.4-360 32.4-356 1600 438
Total - - - 29.1-364 315363 1636 “1
Purpose To test the model performance in the Big Bend region
Deepwivter hoetznn NCEL Aug-Sep, 20 Disorete X-300 - L] x
suppon
SEAMAP o Oct, 2014 [Dscreee 2.3-358 323358 az 19
SEAMAP o Jun, 3014 Dacrone X104 FAN-I64 53 4
Asonymioe WG May-Nov, 2010 Discreee 151529 MH-029 1% »
Asonymos WG Jan-Now, 2011 Disoreee 2A0-048 TH6-348 188 100
Asommoms We Jun, 014 Discrete 11,6207 20.2-281 0. 1"
Total - - - L4064 205-364 102 w0
Purpase To test the model perforveance o1 fived locations
Buoy 42,022 NBSC 122015 Continows 31.7-365 335365 493 150
{27.504'N,
8374w
Mooy crmeld NOopC 2011-2015 Contisscs  1.0-30.0 27276 1661 &5
(30.308°N,
S8.140W)
My CoanMs CINAC 2009, 2011, Connooows 15.7-35.6 15.9.35.6 567 146
(30N, 85.0'W) 2013-2014
Toral - - 10305 27365 azz 7
* DEEPEND: Deep-Pelagic Nekton Dynsmics of the Gaif of Mesion; SEAMAP: h Aren tmg ool A Progemm.

* NG Nartiom| Cossers for Bnviroemental informasion,

field SS8

of the field

Fig. 1. Spatial

d 5SS In the GOM slong the enutse tracks (i) Cretse tracks from all dato deserbed (n Tatde | (h) Crulse tracks from the sasse data but with

co-docted sand concurmmt { = 6 &) satellite iy and SST. (V'oc interpretation of colors (n this figure, the reador i reforred to the web verson of this srticle )

2013 and 2015, ranging between 31.7 and 36.5; SSS from buoy
“CoastMS” were collected In 2009, 2011, and 2013-2014, ranging be-
tween 157 and 356, These buoy-measured SSS data represent In-
dependent data to evaluate the algorithm performance, as 99.9% of
them were excluded in the model development. Furthermore, dally
means of these continuous SSS data were used for statistical analysis
(see Section 3 5 and Tanle 2). The spatial distributions of these SSS data
are shown in cach case in Section &

2.1.2. Sarellite data
The satellite data wsed in this study were downloaded from the

NASA Goddard Space Flight Center (GSFC) (hurp//vosancolorgsfc.
nusa o), Dally standard NASA Level-2 ocean color data products
(reprocessing version R2014.0) with spatial resolution of ~1 km were
derived from the Moderate Resolution Imaging Spectroradiometer
(MODIS) on the Agua satellite and Sea-Viewing Wide Fleld-of-View
Sensor (SeaWIFS) on the SeaStar satellite. MODIS data (ncluded SST
and Rrs in 5 spectral bands (412, 443, 488, 547, 667 nm) between July
2002 and December 2015, and SeaWIFS data included frs n 5 spectral
bands (412, 443, 490, 555, 670 nm) between November 1997 and July
2002, Both 85T and Rrs data were used as inputs of the 858 model, SST
was used to cap the passibl in b river
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and oceanic waters, particularly the upwelling water masses which are
rep d by lower temp (Palacios ot al, 2009), The 5 visible
spectral bands were selected mainly considering the ex ial decay
of CDOM absorption from the blue to the red. Rrs(667) from MODIS or
Rrs(670) from SeaWiFS has been used as a surrogate for sediment
concentration in the water cofumn (Stumpd and Pennock, 1989 Wynne
et al., 2005; Barnes et al., 2015), therefore the use of Rrs667 was to help
minimize the turbidity effects in SSS-CDOM retrievals through em-
pirical technigues. Note that although MODIS has a 531-nm band and
SeaWiFs has a 510-nm band, for cross-sensor consistency they were not
used in this study. For the same reason, 1o assure consistency between
MODIS Rrs{547) and SeaWiFS Rrs{555), MODIS Rrs(547) was con-
verted to Res(555) nm based on the standard SeaDAS7.0.2 processing
procedure using Eqs. (1) and (20 [n addition, to test the published re-
gression model, daily standard MODIS Level-1A data (version R2014.0)
in Sep. 2014 were downloaded from NASA GSFC and processed to Level
3 using SeaDAS7.0.2 to derive the total absorption coefficients at 488,
547 and 555 nm.

Rrs{555) » 10%(0) x log,, (Rrs{547)) = by), Rrs(547) < sw
where sw = 0.001723, a; = 0.986, and b, = 0.081495,
Rrs{555) » a; % Rrs(547) = by, Rrs(547) = sw

where sw = 0.001723, a, = 1.03, and by = 0.000216.

In addition to the satellite ocean color data products, standard
NASA Level-3 monthly SSS composites, derived from Aquarfus mea-
surements, were also downloaded from the NASA GSFC. These data
were used to compare with the correspanding 5SS composites estimated
from MODIS measurements with the SSS model developed in this stady.

mn

(2)

2.2, Method

2.2.1, Model selection, and principle and structure of MPNN

Our first attempt to estimate SSS from satellite.derived Rrs was
through the SSS.CDOM relationship where CDOM was estimated from
satellite-derived Rrs using the Quasi-Analytical Algarithm (Lee ot 2l
2002). However, the results were unsatisfactory, with virtually no re-
lationship observed 1 field d SSS and satellite-derived
CDOM for SSS between 27 and 37 (Supplemental Fig. 51). Therefore,
the approach of deriving SSS through explicit use of CDOM was aban-
daned, but other empirical methods were tested.

In the published literature, statistical approaches such & multi-
variate linear regression (MLR) and artificial neural network (ANN)
were used to develop satellite-based SSS models (Woag et al | 2007
Ahn et al, 2008; Palacios et al., 2009; Marghany et al., 2011; Urgiehart
el al, 2012 Bal et al. 2013; Geiger et al, 2011 Qing et al, 201
Vondermeulen e al, 2014). In this study, the commonly used tradi-
tional empirical methods (i.e., MLR, multi-variate noalinear regression
[MNR), and principle component analysis (PCA) regresslon) and ma-
chine beaming based approaches (4.e., decislon tree, random forest, and
Support Vector Machine (SVM) regression) were all tested, but all
yielded unsatisfactory resulis (see below), Among the tested npproaches
was artificial neural network (ANN), which showed better performance
than all other approaches. ANN was then selected for the 855 remote
sensing model in this study; one distinet advantage of ANN s thar it can
approximate the nonlinear relationship between observations and tar-
geted variable (SSS), without explicitly knowing their functional de-
pendence (Ihicin et al,, 1993),

In the past, ANN techniques have been widely used in retrieving
AOPs, 10Ps, and other parameters such as CHL and total suspended
matter (Varaka et ul, 2004, Chanban et ol 2005; Vilas et al, 2011;
loannog et al,, 2001, 2013; Jamet et al, 2012; Chen et al., 2014, 2015).
The type of ANN used in this study is a multilayer perceptron neural
network (MPNN) (Bishop, 1995; Groes et al., 1999), which is a feed-
forward neural network that consists of one input layer, one or more
hidden layers, and one output layer. As shown in Fig. 2, neurons of each
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Fig. 2. Architecture uf the MINN, consatiag of cow inpret layer, one bidden layer, and one
ourput layer. The cross-layer comaections ae marked with differem coboes, ndicating
different welghts and bissos, The numbers of oeurnns in the mpot and vutpat layess of the
MPRN are Hoed s specitiad in the rectangulae boxes, and only the aumbes of neurons in
e hiddon bayer was vacied 1o derfve the best MPNN frame,

layer are forward connected to the neurons in the adjacent layer, but
without any connections to neurons in the preceding layers, tnputs are
distributed into the MPNN by the first layer. In the hidden and output
layers, each neuron is randamby initinlized with two parameters: weight
and blas, which are used to transform the Input signals by an activation
function. Once the number of hidden layers and the number of neurons
in each layer are determined, the structure of the MPNN is fixed, and
the relations between the inputs and outputs, which depend on the
weight and bias values associated with each connection, are also fixed,

The values of weights and biases are adjusted through i ion to
minimize the sum of the squared errors b the modeled outp
and the real outputs (ie., the p to be §) by u su

pervised learming technique.

For the MPNN presented in this work, a back-propagation learning
technique with a Levenberg-Marquardt optimization and & Bayesian
regularization algorithm was implemented in Matlab (R2013a). To
transform the input signals in each layer, the classic hyperbolic tangent
sigmoid (a = tansig(n)) and linear activation functions (a = purelin
(n)) were applied to the hidden and output layers, respectively. The
back-propagation learning technigue is @ backward iterative learning
algorithm; it starts at the output layer and ends at the input layer,
where the weight and bias of each neuron are updated based on the
errors between the current outputs and the actual output valoes (Hochi
Nielsen, 1989, Goh, 1995). The Levenberg-Marquardt optimization al-
gorithm, also known as the damped Jesst-squares method, |s a combl-
nation of steepest descent and Gauss-Newtoa methods. It regulates the
network with the probabilistic approach of the Bayes' rule in order to
minimize the combination of squared errors and welghts, and then
determines the correct combination to create a network that can gen-
eralize well (Mare, 1978), With Bayesian regularization (Kwok and
Yeung, 1996; Burden und Winkler, 2009), the network automasically
stops tralning when reaching a convergence - meaning the sum of
squared errors, sum of squared weights, and the effective number of
parameters become stable after several iterations. This regularization
method is more robust than early stopping techniques (another neural
network training technique} because the verification procedure pro-
vides an objective ¢riterion for ending the training to avoid over
training. The weakness of the carly stopping method was also proved in
our study as the model showed poar perf (unrealistic $SS re-
trievals) when applied to satellite images even through the model
performance was satisfactory during model training and tuning using
discrete data points. The regularization methoed is also insensitive to the
architecture of the netwark as long as the necesssry minimal archi-
tecture is provided (Livingstone, 2008). Once the MPNN stops training,
the structure of the MPNN will be determined, with the values of
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weights and biases finalized.

2.2.2. Data preprocessing of MPNN

Based on the data range of the field SS§S measurements in Table 1,
bath MODIS derived data products - SST and Rrs (412, 443, 488, 555,
667 nm) and SeaWiFS-derived data products - Res (412, 443, 490, 555,
670 nm) were used in the MPNN SSS model development.

To obtain high quality data, concurrent field - measured SSS and
satellite-measured SST and Res (Table 1) were selected using the fol-
lowing criteria, Considering the diurnal tidal cycle in most regions of
the northern GOM, a time window of = 6 h between field and satellite
measurements was used, Various data quality flags (e.g., atmospheric
correction failure, stray light, sun gling, etc.) (Bames and Hu, 2015)
were applied 1o discard all low-guality satellite data, and valid data
within a 3 x 3 box centered at the Jocation of each field SSS mea-
surement were extracted and averaged (Sailey nnd Werdell 2006) If the
number of valld pixels was =5 and the variance of these valld plxels
was = 10, Such averaged data was used to represent satellite ob-
servations aver the location. After applying these strict quality controls,
and fleld data binning to match satellite pixel resolution, 3640 con-
Jugate observations of feld-measured 5SS and sarellite data products
were determined valkl between 1997 and 2015, and avallable for the
MPNN SSS model development (Fig. 1b). Note that for SSS measured
between 1997 and 2002, field-measured 81 data was used as surro-
gates of satellite-measured SST due to the lack of SST measurements by
SeaWiFS. As demanstrated in the sensitivity analysis in Section 1.4, the
MPNN §55 model is insensitive to SST, and this replacement should
have little influence in the modeled SSS, In the conjugate dataset, field-
measured SSS ranged between 1.4 and 38,0, satellite-measured SST
ranged between 9.7 and 33.0 °C, and satellite-measured Rrs cavered a
wide dynamic range. Detailed statistics of each parumeter are described
in Vahle A

One advantage of using comcurrent satellite SST and Rrs measure-
ments directly to train the MNPP is that uncertainties in these satellite.
derived data products will be implicitly incliuded in the empirically
derived weights and biases of the MPNN. When the same data products
are used for 85 predictions as those which were used in model de-
velopment, such uncertainties, to a farge extent, should be self-can-
celling.

Before the MPNN training, to avold conditioning problems and to
make the MPNN equally sensitive to all inputs and output (losnnon
et al. 2011), both the MPNN inputs (SST and Res) and output (SSS) in
the conjugate datases were normalized by subtracting the mean and
dividing by the standard deviation (0) of each parameter using the
following equations (Lawrence, 1991k

nSST = [{SST ~ mean(SST))|/c(SST) (&)
nRrs(i} = |Rrs{A} = mean(Res(R)) |/=(Rrs(L)) (L))
nSSS = [SS8 — mean(588)]/2(85S) 5

Therefore, the output of the MPNN needs to be denormalized with
the mean and standard deviation of SSS using the inversion of Eq. (5),
The pormalized conjugate dataset was randomly divided into two
parts, with 70/% (2548 points) used to traln the MPNN, and 30% (1092
paints) to test the trained MPNN to confirm the predictive power of the

Table 3
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madel.

2.2.3. Training of MPNN

Several studies showed that any continuous function can be re-
presented by a MPNN with one hidden layer (Hoenil et ol 1989, Alres
©f al, 2001). Therefore, to train the SSS model using the normalized
dataset in Tahle 1, based on the peinciple that the number of weights
should not be greater than the number of training equations, & group of
MPNNs with one hidden layer (Fig 2) were twested by varying the
number of hidden neurons between 1 and 60, In each test, the weights
and biases were randomly initlalized 10 times o avoid the unfortunate
set of initial weights and bias (the case where the MNFP can be trained
well but cannot be generalized well when applied to o new dataset o n
satellite image). Once the oumber of hidden neurons was determioed,
the optimal network structure with finalized coefficients of weights and
bias was determined,

In the training phase of the MPNN, different formulas and different
combinations of the input variables were thovoughly tested. For ex-
ample, ding to Iy used Rrs fi in CDOM and chlor-
ophyll algorithms (Carder et al, 1999, Hu ot al. 2012), Rrs in loga-
rithmic scale, Rrs band ratios {i.e., Rrs{412)/Rrs(555), Rrs(443)/Rrs
(555)), and relative band differences were all used as model inputs and
wned following the steps described above. According te Gelger e ul,
(2011}, in the model tuning phase, geological latitude and longitude
data were also chosen as the inputs to train the model,

2.2.4, Accuracy assessment

The empirical nature of the MPNN makes It extremely Important to
understand the model applicability under varlous oceanographic con-
ditlons from different coastal and offshore reglons. 1n this study the
model accuracy was evaluated using (ndependent datasets that were
not used in model development, These datasets are described in
Tabie 2, representing different scenartos mnging from river plumes and
constal runoff in different regioas of the northern GOM, To increase the
data volume, the time difference between satellite and ficld measure-
ments was relaxed to 24 h. [n addition, to evaluate model performance,
the moded-derived SSS was compared with those estimated from the
satellite microwave measurements as well as time-series data obtained
from marine buoys.

To compare the model-derived SS§ and field-measured SSS, and to
gauge the performance of the MPNN in the training and various eva.
luation phases, coefficient of determination (R’), root mean square
error (RMSE), mean bias (MB) and mean ratio (MR) were used, and the
same statistics were also applied in the sensitivity analysis below.

2.2.5. Sensitiviry to ervors (n the inpur variables (SST and Rrs)

The inputs to the MPNN model, namely MODIS-derived SST and
Turs, are not ecror free. In order to understand the model sensitivity to
such (nput erroes, SST and Rrs errors were first simulated using un-
certainty values reported (n the literature, and then fed 1o the MPNN
madel. §58 derived from the same MPNN using ervor-free inputs and
error-added inputs were then compared o determine the model's sen-
sitivity to input errors.

For evaluntion of model sensitivity to SST errors, because MODIS
85T uncertainties in the GOM are around 0,5-1 °C {(Hu e al | 2004), SST

Seatisties of the conjiggate dataset in 1abiec 1 afber matching with conaurmet wtellise SST and ey messuremernes with a e window of = & (N = 3640), This dataset was used to
develog the MINN S55 model, with 70% swed to train the MPNN sl the remaininmg 300 used 1o test the trvined model. Correponding cruise tracks of this desaset are shown i |, 18

Varsald Tld ) Seellitv-seawend SST ('C) Rl 2 far ) Redds o ) Rraks (s ') W3S () Wrb6? ()
Maximum o 0 Qo Qo2sns 0057942 0044670 024240
Minimum 14 o7 OO0z Q00068 0.001256 00643 (0000
Medisn n0 W4 0005554 QU570 DKESLES 0,001 B 0000202
Mewm M0 =0 QC06000 0nasm2 (NEARK 0.002062 0.L0055)
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errars of * 1 °C were added to the S§T data in the MPNN model, where
the correspanding Res values were kept the same.

For evaluation of model sensitivity to Rrs errors, MODIS Rrs ervars
were simulated using reported MOINS Rrs uncertainty values and
spectral dependence of MODIS Rrs ervars (Ha et al. 2013). In other
words, MODIS Rrs errors are nat spectrally independent, but errors in
one band, to a large degree, are redated to ervors in another band, with
additional random errors (Fig. 10 of Hu et ol 2013).

The spectrally-dependent and indepenclent Res errors were simu-
lated in the following way, following the same approach of 0f et ol
(2017}

1) Simulate 5000 Rrs667 errors following a Gaussian distribution with
# rero mean and » standard deviation of 5 x 107" s~ ¥ (Ho ot ol
2013), This is basically the error distribution determined from
MODIS measurements in ooean gyres;

2) Calculate the corresponding spectrally dependent Res errors at 412,
443, 488, and 555 nm using Egs, (6)-(10) (Ho e al, 2013);

3) Add 5000 spectrally-Independent Rrs errors In each band; these
errors also follow & Gausslan distribatlon with zero mean and an
assumed standard deviatlon (A). The addition of these errors to
those In Step 2 lead to partlally spectrally-dependent errors, re-
presenting realistic cases from ocean color measurements;

4) Select one Rrs spectrum from the tralning dataset described in
Toble 1 (corresponding field-measured 885 = §1), estimate 858
using the MPNN moded. Then, add the 5000 erroneous Res spectra 1o
the selected Rrs spectrum, one by one, and calculate the corre-
sponding §SS using the same MPNN model (marked as 52 for each of
the 5000 input spectra). The §SS errors would be $2-51 where §2 has
5000 values and 51 is a single value. The standard deviation of the
5000 $SS ervars represents the 5SS uncertainty due to input Rrs
CITOrS;

5) Repeat step 4 for the whole dasaset for different §1 values, leading
to §SS uncertainties for each S1 due to the same input Rrs errors;
and,

6) Bin the 51 values with an interval of 1 in §8S, $8S uncerminties
(from the MPNN model) for each bin are calculated as the mean and
standard deviation from all standard deviation values within each
bin.

RrsS47error w 3,830 x RrstbTerror = 0000041 &

ResS5Serror = Rrs5d7error L]
Rrs#SSerror = 2,6635 x Res35Serror — 00002 8)
Rrsddlerror = 07322 x RrsdSSerror + 00001 {9

RrsA12erroc = 08154 x Res667ervor + 0.0003 (10)

Note that Eq. (6) was from Hu et 2l 2013, Eq, (7) was one as-
sumption made in this stady, and Eqs. (4)-(10) were caleulated based
on Table 3 n Hu ecul, 2013, with R of 0,994, 0,995, and 0,241, re-
spectively.

In total, four expeniments (Experiments 1, 2, 3 and 4) were con-
ducted based o the steps above. In these experiments, the spectrally.
dependent Rrs errors were kept the same, but the spectrally.in
dependent Rrs errors were varied to have their standard deviations {i.e.,
the A term in Step 3above) of 1.2 x 10 ' ' 23 x 10" &~ ' and
3.6 x 107 Yst |, respectively, in each case,

3. Results
3.1, Oprical characteristics of the training dataset

Fig. * shows the Rrs spectra of the datases used for mode! devel-
opment (Tabie 1), which covered a high dynamic range. The Rrs peaks

occurred in different bands for different 5SS ranges. Specifically, for
§SS = 30 (Fig. Ja), Res peaks were found in all bands except 412 nm,

(2
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suggesting significant influence by phytoplankton pigments and/or
CDOM as they both strongly absorb light in the blue. For higher $8§
(Fig. 3b-d), most spectra showed higher Res in the blue than in other
wavelengths, indicating clearer waters than the lower.SSS watess.
There are some exceptions where the magnitudes of Rrs are high in the
green and red wavelengths, indicating waters rich in suspended sedi-
ments. From Fig. 3, it is clear that similar spectra shapes may carre-
spand 1o different SSS values. Such characteristic indicated the complex
relationships hetween SSS and Rrs spectra {or water types), suggesting
difficulties in retrieving 5SS via traditional inversion algorithms (either
empirical or semi-analytical). However, the subtle differences between
these spectra farmed the basis of using an MPNN approach to address
the technical challenge. Purthermore, the full dynamic range in both
magnitudes and spectral shapes indicated the comprehensiveness of the
dataset, which & important for the MPNN empirical model to work
under most, if not all, scenarios because there is no explicit functional
relaticaship between the spectral Rrs and SSS in the model.

3.2, MPNN model training and validation

3.2.1. MPNN model training

Following the procedure described In Section 2,25, different for-
mulas and different groups of the Input variables were tested. It was
found that when 5ST and spectral Rrs data were used as the model
inputs and the number of neurons in the hidden layer was set to 3, the
MPNN showed the best performance in terms of RMSE, R, M8, and MR
when fickd-measured 58S was used to gauge the moded performance.,
Therefore, this mode! setting was regarded as the optimal structure of
the MPNN, As a reference, Tuble 4 shows the performance of all tested
empirical approaches, including MLR, MNR, PCA, decision tree,
random forest, and SVM regression, along with the MPNN. Clearly, the
MPNN showed the best performance, and therefore was selected in this
study.

As shown in Fig. 9 and Toble 5, 70% of the dataset used in the
training of the MPNN (Fig. 4a) showed a RMSE of 1.2 (6.9%) and R? of
0.86, with MB of — 0.0 and MR of 1.0, The remaining 30% of the da.
taset used in the testing of the trained MPNN (Pig 4b) showed a RMSE
of 1.2 {1.5%) and R? of 0.86, with MB of 0.1 and MR of 1.0. For the
entire dataset (Vg 4¢), the testing showed a RMSE of 1.2 (1.0%) and R?
of 0.86, with MB of 0.0 and MR of 1.0. In addition, the model showed
better performance at 5SS > 30 than with §85 = 30 in both model
training and testing, with RMSE of 1.0 and 3.0, MB of — 0.1 and 1.4,
and MR of 1.0 and 1.1 for S5§ > 30 and 858 < 30, respectively, in
madel training, and RMSE of 1.0 and 2.8, MB of — 0.0 and 1.3, and MR
of 1.0 and 1.1, respectively, in model testing. The histogram of the
residuals in SSS estimation in both model training and testing (Flg. 1d)
showed that 78.3% of the residuals were within the RMSE based on the
whole dataset {which was 1.2) and 96% of the residuals were within
RMSE of 2, Indicating grear Improvement over the published work
(Vundermealen ot al, 2014). The near symmetrical distribution around
0.0 indicated minimal mean blas in the modeled 5SS, However, the
relatively large and positive MB with SSS < 30 indicate overestimation,
as the MPNN model 15 more sensitive to Rrs uncertainties in this salinity
range (see Soction 3.6),

3.2.2, MPNN model validation

To further validate the developed MPNN 58S mode), an independent
dataset as described in Toble 2 and Fig Sa was used, Note that this
dataset was not used in either the MPNN madel training or testing
above. The comparisan between MODIS-estimated $SS and field-mea-
sured 8§55 in Vig 5bshowed a RMSE of 1.1 (3,4%), MB of 0.0 and MR of
1.0, again with better performance with 8§ > 30 (RMSE = 1.0,
MB = -0.1, and MR = 1,0) than with $58 < 30 (RMSE = 3,0,
MB = 2.8, and MR = 1.1). Again, similar to the results shown in the
maodel training, relatively large uncertainties occurred for $SS < 30,
which was mainly attributed to the relatively high sensitivity of the
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MPNN model 10 Res uncertainties in this salinity range (see Scction
3.6). The spatial distribution and histogram of the residuals in
Fig 5S¢ & d showed that 78.4% of the residuals were within the RMSE of
the developed model and 92.5% were within RMSE of 2. Most of the
large residuals (> 2.0 or < — 2.0) were found in the Mississippi river
delta where 855 was < 30, and where the positive MB and MR values
Indicated overestimation,

3.5, Mode! evaluation for various cases

The scatter plots and stutistics of model validation provided overall
statistical measures and uncertainties of the MPNN model, To further
evaluate the model performance in different regions under different
scennrios in the GOM (eg., Mississippi-Archafaloys coastal waters,
Mississippi River plume, Florida's Big Bend area, etc.), the model was
further evaluated with different dataset groups for each case (Tahie 2
Sevtion 2.1.1), Note that in each case, the field-measured SSS dataset
was independent from other cases, and nove of these datasets was used

Table 4
Model i

[ R — _____

Rewvode Sewming of Protroament 200 (2017) 115-152
""" Fig. 3. Spectral chaneiristies of e duaset
described w Toble | and 11 1h doc differemt
S55 rurges. These Rrs spectrs (ssite: s '),
along with ST were used to develop the MPSN
5SS model The spoctia cover & wide dynsnic
moge for different opescal conditions. (For in-
terpeetation of colors in this Nigure, the reader

= s referred to the web vermon of this wetick. )

550 &0 650 T
Adnm)

35<§SS<38

in the MPNN training, testing, or validation above.

3.3.1, Mississippi-Atchafalaya coastal waters

Underway SSS measurements from two cruises (GMOS06 and
GM1003) described in Table 2 were used to evaluate the MPNN model
performance in coastal waters off the Mississippi-Atchafalaya region.

The results for cruise GMO606 are shown in Tlg. 6. For the whole
dataset, the RMSE was 2.4, with MB of (.4 and MR of 1.0. At §8S > 30,
the variation of MODIS-estimated SSS along the cruise track agreed well
with the field-measured SSS with RMSE of 1.5, MB of — 0.3, and MR of
1.0. At SS5 = 30, the model showed higher uncertainties (RMSE = 4.0,
MB = 2.1, and MR = 1.1) ially in three locatiorns (marked as A, B,
C in Tig. 6a-c). These locations are in close proximity of the coastline,
where the Mississippi-Atchafalaya river flows can change fast {e.g.,
hours) following tidal mixing. The spatial distribution of the MODIS-
estimated 855 along the crutse track |n Fiy, 6b showed agreement with
field-measured S5S (overtaid in Fig 6d), with low 5SS values nearshore
and higher SSS values offshore. Furthermore, a 6-day MODIS 5SS

hods (ML MNR, a0d PCA) and sachine- besrning based emparticnl methads {Decision tron, Random Forest, SVM, and MPNN), It s

M-nmlmemmklhnmzmlwﬂm meﬂmmmv win derfved from model crokséng, med afver ' was from model ynbidation, Note B statistics in our study

was besed un the calculation of coefficlent of & wattve RY coukd be dertved If there were sorong bis i the modeled SS5 (12, Culte SYM)
Model Kemed Function Model Inputs s w MR MK
MR - R Band ratios’ 1827 a7ImTI 0.0/00 10710
MNR - Rrs 8and mthos and SST 1515 QBLDTS o.0m0 10/1.0
PCA Regression - RrsfA) and SST 22722 Q55055 0.000 1010
Decishon Tree Simple Troe B3 and $5T 1519 Q70 0 ~0n/-a0 10700
Medium Tree R and SST 11148 Q89005 -o0/-00 10710
Comples Tree Resth) and S5T 0915 093,078 0.0/~ 00 1010
Random Forest Bousted Trees Rrsf3) and 55T L8220 aTst - 15/~ 14 10710
Bagged Treey Rri3) and 5T 1074 QYLN 0000 1o/80
VM Linear A and ST 2426 a491.39 o.AMn4 10/1.0
Quadratic Rrs(3) and $5T 1820 arznes 0.2MA 10/1.0
Osbir Rnix) and 5T 6.517.3 - 27 - %62 -21/-18 10710
Pine Gausstam B3 and $51 2523 asam.5 003 10040
Medium Gaussisn R and ST 1716 074078 D203 110
Coprse Gauysion Rsih) and S5T 21720 ao1ne2 044 1o/80
MPAN L 2 Marquandt op Bndh) and S5T 12132 66/ 1L86 a0 L0
and @ Neyesan regularizasion

* Ry Buetd ratios = [Res(6E7VReA(555), Tus 667) ee( 283) R 6671 /Trs{443]),
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composite map (Fig. 6d) covering the cruise period also showed
agreement with field-measured $SS (1'1y. &) although the statistics are
stightty worse due to the larger tme difference (RMSE = 3.6,
MB = — 0.3, and MR = 1.0).

Results for the GM1003 cruise are shown in ¥z 7. Similar to those
found from the GMOS06 crulse, MODIS-estimated SSS mimicked the
variation patterns of fickd-measured SS5, with RMSE of 3.4, MB of 0.0
and MR of 1,0 (Flg 7a), and the spatial distributions in MODIS-esti-
mated 5SS showed lower SS§ values in nearshore waters than in off.
shore waters (Fig. 7b), a result of river discharge and other terrestrinl
runoff. Also similar to GMOG(6, better model performance was found
for SSS = 30 (RMSE = 1.6, MB = —0.3, and MR = 1.0) than for
§8S < 30 (RMSE = 4.7, MB = 0.3, axl MR = 1.0). The agreement
between MODIS estimated SSS and field - measured SSS along the cruise
track can also be visualized in Fig 7d. Such an agreement appeared
even better when MODIS data along the cruise track was extracted from
8 12.day composite map covering the cruise period (Vig 7¢)
(RMSE = 3.7, MB = 0.5, and MR = 1.1). Indeed, when the field-mea.
sured 5SS was color coded in the same way & with the MODIS

Table S

composite $55 map (Fig. 7d), thelr agreement In spatial distribution
pattemns is clearly revealed, both showing lower SSS in nearshove wa-
ters than In offshore warers,

In short, in Mississippi-Atchafalaya coastal waters the MPNN 5SS
model could capture the 858 variations with a reasonable accuracy and
quantified uncertainties,

3.3.2. Mississippi River plume

To test the model performance In quantifying $5S of river plumes,
both discrete and continuous §SS measurements from two experiments
were used (Table 2),

‘The first experiment was (n the northern GOM where the Mississippl
River plume was found on 14 August 2015 from field measurements.
585 measurements collected between 9 and 21 August 2015 (DEEPEND
cruise in Table 2 with cruise track overlaid in Vig. 8b & d) were used to
examine the performance of the S8 model, with results shown in
Hg “a & c, Within a 24-h time window, MODIS-estimated 855 showed

with field d SSS across the river plume (Fig. £a),
wull AMSE of 0.2, MB of 0.2, and MR of 1.0. The corresponding MODIS

Perfoemance stutistics of the MPAN 855 meded dunmy model development (for Buth moded erainsy snd tsting) asd independent meded validstions under dliffereest womiron usng the

datn deseribed fn Voldes Land L

Suatktics RMSE MBE MR L & of data points
SSS <30 SS5 > 30 whole S55<530 S5 > 30 whole S5S<30 S5 > 30 whoke

Model development (= 6h) Model training 30 Lo 12 La ~0.1 Qo0 11 L 10 0.86 1548
Model isting . 28 Lo 12 L3 =0.0 (L8} 11 Lo 10 0.86 naz
Whole detaset 30 Lo 12 ~-Qi -0l 0.0 L1 Lo 10 0.86 3640

Independent moded xolidation { = 24 h)

Neathen GOM (A proem! validation) a0 Lo 1 28 -0 0.0 1 L 10 or a2

MARS reghon GMOGOL 39 (1] 24 21 -03 04 1 it 10 0% W8
GMI003 a7 Lo a4 0.3 ~03 0.0 10 o 10 0,59 348

Iver phne DEEMND - 02 02 - 0z 0.2 - Lo 10 090 3
WS1s254 - Lo 10 - ~ 03 -3 - L 1.0 ~ 035 488

Iig Bend regon 27 "7 1% a2 s 04 10 o 10 062 s

Comganson with Aquartus - R s - 03 0.3 - L 10 085 11

Comparisie with huey S8 al 1A 27 2 “0 [ S 1 10 086 367
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SSS map on 14 August 2015 In Fig. sb clearly showed that the MODIS
$SS image not only captured the river plume but also showed high
retrieval accuracy for both high-SSS and low-55S waters. Unfortunately
due o cloud cover only one Jow-S5S data point in the offshore plume
was valldated (last point In Fig 8a). To overcome this difficulty, &
MODIS 885 composite map for the cruise perfod (14 days) was gener-
ated to examine whether other Jow-858 features In the MODIS map
could be validated (Fig. 8d). The comparison along the cruise track
again showed agreement between MODIS retrievals and field mea-
surements, with a RMSE of 1,3, MB of 0.3 and MR of 1.0, Note that such
increased uncertainties (compared to Fiy. Sa) are apparently due to the
time difference of several days. Even though, the plume feature is well
captured by MODIS with moderately accurate SSS retrievals.

The second experiment was from South Florida coastal waters in-
cluding thase around the Florida Strait (Fig 9) as the Mississippi River
plume can reach this region by traveling a distance of > 1000 km
(Orener et al,, 1995 Hu et al., 2005). The plume was captured in MODIS

gery b 1 and 4 September 2015 (dark F in Fig S%c&d)
and verified by fekd data collected during the WS15234 cruise survey.
Fig. 9a st d the agn b ent MODIS SSS and field

SSS measurements (within = 24 h) along the cruise track (overlaid in
Figs. Yc-e), with RMSE of 1.0, MB of - 0.3, and MR of 1.0. Fig. 9b
showed the same comparison but MODIS composite data during the

40

Histo,
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Fig. 5. Performunme of the MPNN 855 model from

usig an edep dataset In Tatoe 2,
DNorte that this datist wisk ol weed s either model
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cruise pertod {4 days) were used, with RMSE of 0.9, MB of ~ 0.2, and
MR of 1.0. In beth comparsons, MODIS captured the river plume with
relatively low SSS (around 33-34), with uncertainties of < 1.0,
Oversll, the two experiments above demonstrated that the SS§
maodel does caprure the river plumes well [n the GOM, even when the
plumes were advected to > 1000 km reaching the Florida Strait, More
importantly, MODIS-retrieved SSS in these plumes is relatively accurate
with uncertainties < 1.0 for the salinity range of 30-37. Because SSS in
offshore plumes is rarely < 30 due to mixing with ocean waters, the
$55 model should therefore be regarded as being capable of quantifying
885 in offshare rver pl with k inti

uncer

3.3.3. Florida’s Big Bend region

Fig. 10a shows the field-measured SSS in the Big Bend region and in
the aoffshore NEGOM, where the data are described in Table 2. Com-
parisan between concurrent ( = 24 h) MODIS-derived SSS and field-
measured SSS is shawn in Fig. 10b, with a RMSE of 1.9, MB of 0,4 and
MR of 1.0. In terms of absolute uncertainties the SSS model showed
better performance with SSS > 30 (RMSE = 1.7, MB = 0.6, and
MR = 1.0) than with SSS < 30 (RMSE = 27, MB = - 0.7, aml
MR = 1.0). As shown in the enhanced RGB image on 6 June 2014
(Fig. 10e), a wide band of dark festure (near parallel to the coastling)
indicated coastal runoff from Jocal rivers and non-peint sources. To

Flg. 6, Pesformance of the MPRN 55 moded In the

s @.1 f N a Missisippi-Atchafalays comtul region, evabanal
a0 W) Moy B ‘ with data cellecter from crutse GMOSOO (Talik 23
] % ‘ LAl l“:l (3) Comparison hetween flekd-measired 555 ned
mn o i concurrent { £ 24 h) MODIS desived SSS; ) spa.
" | RMSE~24 R tial distribiticess of e MODIS derived 585 slurg
10 ! MB = 014 Satetlite 558 the cruise track In (2. White cokee (ndicates oo
: A MR =10 } MODIS dat; (¢) comparisces between Seld-mea.
A e * sured S58 st MODIS-derived SSS extractod from
0606 RGN uru% 10 G{1E o6ai12 e MIIDIS crmmponiie e fi e it i (4)
a0 MOOIS $85 composie map for the cruise peoied
uh Clune 6-11, 2006), with Geld eessumd SSS ovee-
:m“\ C Taidd and color coded aloeg the cruise Buek (ilack).
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facilitate comparison, field-measured §55 between 6 and 13 June 2014
was color coded and annotated on this Image; the corresponding
comparison with MODIS is marked as solid circles in Fiy 10b. The
comparison showed a RMSE of 1.4, MB of 0,0, and MR of 1.0, The
MODIS 555 compesite map for this period in Fig. 10d showed low S58
values in the plume region and higher SSS offshore, suggesting that the
§8S model worked well in Florida's Big Bend area in vevealing not anly
SSS spatial patterns, but also ahsolute SSS values.

3.4. Comparison with AQuurius SS§

Aquarius was designed to measure SSS through microwave sensing,
with a known uncertainty of < 0.3 (Abe amd Fhuchl. 2014). To
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Fig. 7. Same as 71y 6, dat paformmce of
the MPNK 555 model wos evalusted with
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(Table 23 (a) Comparisn betwoen firld-
inessured 558 and coscurremt (= 24 )
MODIS. derived 555; {b) spacial distsibations
of the MODES-derned 555 aboay the cruise
eack In (x). White coloe lodicates no MODIS
ata; (€} compartson Between feld mea.
wored S5 and MOOUSsherived S585 extmcted
from the MODIS ccenpesite map for the
crubse peciod ond (d] MOIXS 555 composie
map foe the crsse peried (Manch 11-21,
2000), weth Seld-muayored S5S overlad sl
mioe cuded along the crmee track (black)
Note that the red dots o the xaxs in {a)
e () indicate that there are no concuarent
MODES. derived 585,

evaluate the performance of the §55 model developed in this study on a
monthly scale, MODIS-estimated 588 and Aquarius-estimated 58S from
August 2014 were compared, Fig. 1 1a &b showed the spatial distribu-
tons of MODIS-estimated 855 and Aquarius-estimated SSS. Both cap-
tured the offshore river plume, and thelr spatial patterns appeared to be
similar in offshore waters. The striking differences are in their spatial
resolutions and coverage. MODIS showed mare details in SSS spatial
variations because of its much finer resolution (1-km) than Aquarius
(1°). Also, due to the coasse resolution, Aquarius Simply has no cov-
erage in nearshore waters. In contrast, MODIS showed large near-shore
$5§ gradients, especially d the Mississippi Delta and Florida's Big
Hend. Fly. 1lc&d further quantified the comparison b MODIS
and Agquarius SSS along two artificial transects (transects 1 and 2 shown

¥ig. 8 Perfocmance of the MPNN S55 model
- dying 555 i the Misissippi Kivey
(MR phume in the northem GOM, evalsted
with dama collecied fram the [EEFDEND
erulse [Tulike 2). (o) Comparisos between
field d 558 and (= 24h)
MOOIS denved $85; (h) MODIS derrvnd 5§
map on 14 Augest 2015, with the TEIPEND
crutse track overlald and comespoading en-
Earced NGH (SIGR) imsge shown in the
st Mgure. Cleardy, the river plume shown
= the ERCE image (dark fostun) & aso-
chated with low S55; (¢) comparison becween
field- messurod SSS and MODIS dedved 555
eatsacted from the MODIS ecanposite map for
the cruise periad; (d) MODIS S8 comgpasne
wmap he the crube period (Augest 9.21,
2015), with cruise trck overkaid.
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38 38 Fig. 9. Perfunnmsce uf the MPNN 5SS
36 91 4 a6 1#1 b model @ guantifyisg S5 In river plomes
314 = il R RE M} e A AR L nT = the Fleeids Strait, evalustod with s

2 e e 2L g o od enllected from eruise WSIS234 {Cubdu 20
0 8 30 4 (2] © b el d
28 HNSE = L1y TS | 28 | RMSE = 00 585 and comourren { T 24 h) MODES-de-
261 NG =) leid N | 26 M- field S8 rived S85; (B) comparison between field-
24 M- 10 sutedite SS§ a4 ME=10 satedlite 555 menvsred S8 and MODS-derlved SSS ex-
22 22 wocted from the MODIS composive mag
! AP | 20! L leainid | e the erue pevioe (¢34 MOOIS ERGS
19701 R0 a/ay 09/04 09701 oz /03 09/00  images showing the MR plume (daek fea-

in Fiy. | 1a&b). Clearly, while the 55§ magnitudes are similar between
the two measurements, MODIS provided more detailed §SS variations
along the two offshore transects. When MODIS estimated SSS along
these two tr were aged over the ponding Aguart
pixels, the results in Fig. | le shows agreement between MODIS and
Aquarius, with RMSE of 0.8, MB of 0.3 and MR of 1.0.

3.5. Comparison with Buoy measured SS5

The above evaluations are focused on spatial changes in SSS. To test
the model performance in deriving SSS time-series at fixed locations in
both nearshore and offshore waters, SSS data collected by several
marite buoys {Section 2.1 1, Tuble 2) were used. The three buoy sta-
tions were selected according to their data availability.

During model development, < 0.1% of these buoy data were found
1o have concurrent [+ 6 h) satellite data due to cloud cover, sun gling,
and other factors which prevented valld MODIS retrievals, For valida-
tion purpose, these 0.1% of dam were excluded, but daily means of the

FieM-measured 5585

35/

i MY

MODIS, Jun

014

40 Coesparzion Betwven mideled
and messured S8

uew) in the Floids Strait, with the
WSISZI cruise tnwk (color coded by
feld measured 355) overlald; (e] MODIS
555 omposite map for e cruise period
(Sepaernber 14, 2015), with cruise tracks
overkid

buoy data were used to compare with MODIS derived SS§ within = 1
day. Considering the daily standard deviation of < 1.0 from —97% of
the buoy data, there should be little bias in the derived SSS daily means.

Fig. 12 shows the Jocations of two nearshore buoys and one offshore
buoy, and comparison between MODES-derived SSS and buoy-measured
SSS from 2009 to 2015. Clearly, even for nearshore waters where 5SS
may approach zero, MODIS derived SSS showed hle agr
with buoy-measured SSS. For the entire range, RMSE in MODIS SSS is
2.7 with a mean ratio of 1.0 (N = 367). However, the errors are oot
evenly distribated, and tend to show higher uncertainties in the inter.
mediate SSS range (between 12 and 25) than in other SSS ranges. This
may be explained by the model sensitivity to input Rrs errors (see
section below).

A striking finding is the scarce data from MODIS over the two
nearshore Jocations. Even though the odds of cloud-free conditions are
about 30% for the GOM (Hu of al. 2009), valid MODIS dota are
far < 30% due to sun glint and stray light. This points to the need for
correcting these artifacts 1o recover the low-quality data to moke them

Fig. 10, Porformeoce of the MINN 385 model in Florida's Beg lend
region, evalumed with datn colleetad from several crulse surveys
(Valihe 2). {a) Dieril af the fidd 1555 in the Big Bend
region from dasa colletted during 6 crefse surveys between 2010 aed
2004 (N = 702); (B) Comparison between firkd-memured 355 sl
concarrent (= 24 hy MODISderived 558 waing data shown In (a}
(N = 205 matchsng pain). The fillsd cindes repriscat those shown in
(ck Ic) ERGH image oo 6 June 2014, annceated with color coded
Mkt d S5 valoes b 6 and 13 Juse 2014, These dusa
e Soun as Gled creles i (D) e Moy i teer s consurent
MODES-derived 855 (d) MODIS S5 compeontte map Semwees 6 oo
13 Jure 2004,
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usable for the 588§ model.

3.6 Model sensitivity to input SST and Rrs errors

Fig 17 shows the model sensitivity to input SST erroes. Statistically,
with + 1 °C errors added, the MPNN model showed slight 5SS under-
estimation, with RMSE of 0.3, MB of — 0.2, and MB of 1.0. With - 1°C
errors added, the MPNN model st d slight ov imation in SSS,
with RMSE of 0.3, MB of 0.2 and MR of 1.0. These results suggest that
the MNPP SSS mocled responded to SST errors in a pegative way, bat in
both cases the model was insensitive to SST errors.

Flg. 14 shows the simulated Rrs errors in each experiment. The red
lines represent those spectrally-dependent errors (Eqs. (6), (41-410)).
From Experiment 1 to Experiment 4, with Increased spectrally-in-
dependent errors, the poinis become more scattered around the red
lines, representing realistic scenarios,

Fig 15 shows the 888 uncertainties from the MPNN model at each
S8S interval (from 1 to 37), corresponding to the Input Rrs erroes in
each experiment. It is Interesting to see that the MPNN SSS model was
less sensitive to the same input Rrs ervors at $8§ < 10 and 85§ > 23
than at 10 = 88§ = 23, The increased uncertalnties with decreasing
5SS far $8S = 23 are easy to understand because 2 decrease in $8S is
often accompanied by an Increase in CDOM and a decrease in Rrs412
and Rrs443 {e.g, Flg 3), leading to increased relative Rrs412 and
Rrs443 errors. However, the Jow SSS uncertainties at 588 < 10 are
counterintuitive as the same argument no longer holds true. To In-
vestigate the reason, the Rrs spectra for $SS < 10 and 10 = §58 = 23
were compared. Although the values of Rrs412 and Rrsd443 at SSS <

10 were lower than those at 10 < SS§ = 23, the Rrs spectral shapes at
S8S < 10 were much closer to the spectral shapes of the simulated Rrs
errars, thus keading to Jower SSS uncertainties at §5§ < 100

In general, §§S uncertaintics increased with increasing Rrs errors,

especially for 8§58 > 23 (Fig 15), Because the simulated Rrs errors in
Fig. 14 were all larger than those estimated from MODIS measurements
(Ho e al, 2013) except for Experiment 1, the S8 uncertainties in
Fig. 15 should be regarded as the higher bound of the model sensitivity
to input Rrs errors. In Experiment 2 where the spectrally-independent
Rrs  errors  were  simulated  with a  standand  deviation of
1.2 %10 %sr ', the resulting $SS uncertainties were < 1.0 at
S5 > 30. As SSS of most coast waters in the GOM is > 30, such Rrs
error induced SSS uncertainties should have limited effect on the
madeled 858 in most regions. Purthermore, because MODIS and Sca-
WiF$ Rss spectra instead of fiekd-measured Rrs spectra were used in the
model development, the uncertainties in MODIS and SeaWiFS Res were
already taken care of implicitly by the MPNN.

4. Discussion
4.1. Which approach to use?

Regardless of the vartous approaches published in the literature,
because SSS does not have an apparent optical signature In the visible
domaln, estimating 5SS from ocean color measurements s all based on
the principle of CDOM-SSS relationship, either explicitly or implicitly,
For the former, Hu et al. (2013} clearly showed that CDOM-SSS re-
lationship in the porthern GOM varled across different coastal regions,
and the test of the CDOM-based approach did not yield any reliable
retrievals for the §58 range of 27-37 (see Supplemental Fig. $1). Then,
why did the MPNN empirical approach could lead to eelatively accuraze
SSS retrievals without the need of re-tuning of the model across the
vanious sub-regions?

Indeed, although semianalytical models together with the use of
explicit CDOM-SSS relationship have the advantage of better under-
standing of the various model terms in their physical meanings, in
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practice they often suffer from uncertainties in the model inputs and
from unknown factors (i.e., variable CDOM salinity relationship across
subregions) nat accounted for in the models. In L, emp

MPNN model, suggesting the general feasbility of using empirical
models to address complex questions. However, for the same reason

models may deal with all these i and und fz

through model tuning of the model forms and empirical coefficients.
For example, the impact of turbidity on SSS retrievals is implicitly ac-
counted for through the wse of Res(667), and the variable CDOM-sali-
nity relationships may be reflected in the Res spectral shapes that are
also implicitly accounted for through the use of the Rrs in all bands.
This has been demonstrated by all empirical models tested in the Initial
data diagnosis (Table 4). They all showed better performance than the
mode! based on explicit CDOM-salinity relationship. Some of these
models (e.g, Random Forest - bagged tree; Decislon Tree — complex
tree) actually showed only slightly worse performance than the selected

why empirical models may work, without explicit understanding of
why they wark, their application must be restricted caly to the en
vironments in which they were trained, and this is exacily why the
madel was evaluated extensively in different environments.

4.2, Modei applicability and lmitations

The extensive evaluation results suggest thar for the salinity range of
~1 to ~37, the empirical MPNN can estimate S5S with an overall
uncertainty of ~ 1.2, While the uncertainty is higher for intermediate
S8 vange (10-25) than for other ranges, the relatively small un-
certalnty for $SS = 30 is particularly useful for monitoring and

MPNN response to nolse in SST MPNN response to nolse In SST Flg. 13 Semsitivity of the MPNK SS8 madd' to
~ 4 - 40 3 in the Joput SST, besed on the dautases used o
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E 240 {
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quantifying offshore river plumes and non-point freshwater runoff as —3.0. These regions are mostly inshore aress where riverine freshwater
§SS in the offshore plumes rarely dropped to < 30 (1ie et al, 2000 mixes with oceanic waters with a high dynamic S8S range. An un.
2005), Such ability is particularly useful for studying biogeochemical  certainty of 3.0 for such highly dynamic low-salinity waters may be
processes and validating numerical circulation models. For regions with acceptable, especially when farge salinity anomaly is expected after
SSS = 30, the uncertainty of S5 estimated by the MPNN model was flooding events. Such ability may help decision-making in aquaculture
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management (ie., ayster farming) Indeed, although empirical in
nature, the MPNN model appears to be applicable 1o most, if not all,
coastal waters in northern GOM. This may seem surprising because the
CDOM - SS§ relationship does vary with region and seasan (Hu et al.
2003) and therefore, even if error-free CDOM can be dertved from
MODIS, regional and seasanal CDOM - §SS relationships should still be
required for different regions and seasons if a CDOM-explicit model
were to be used. One explanation of the robust MPNN performance is
that because CDOM is not used explicitly in the MPNN, rather spectral
Rrs data with their corresponding SSS were used to train the MPNN, the
variable CDOM - SS§S relationship was implicitly included in the neu-
rons and empirical coefficients. This is clearly shown in the model
evaluation results for the Big Bend region. The region has different
CDOM - SSS relationship than from the Mississippi River plume (11
el 2003), yet the same MPNN maodel worked reasonably well in this
region (Fig. 10). One additional advantage of using the MPNN model is
that there is no need o sssume CDOM is a conservative parameter
(Chen and Gardoer, 2004), and the complex CDOM-SSS redationship for
turbid coastal waters of the northern GOM was addressed Implicitly by
the MPNN model through the use of the spectral Rrs data, Overall, the
evaluation results using ship surveys for nearshore and offshore waters
as well as baoy time-serfes data for nearshore stations suggest the ro-
bustness of the model in estimating SSS In coastal waters of the
northern GOM,

However, because of its empirical nature, the MPNN model Is anly
applicable to waters that are encompassed by the training datasets,
Although we believe that nearly all feld-collected 5SS data from major
cruise surveys in the past 18 years have been used in moded tratning and
validation, there is no guarantee that these data covered all possible
oceanographic cooditions. One such exceptional condition is upwelling,
which may bring CDOM-rich high-salinity water to the surface, and/or
bring nutrients to surface waters which stimulate phytoplankton
blooms. Both will result in false underestimation of SSS. However,
strong coastal upwelling is rare in the northern GOM (Muller-Karger,
2000), and coastal spwelling on the WFS (Welsberg et al, 2016) only
caused slight underestimation in S5§ (35.5 in the upwelling zone versus
36.4 in surrounding s, with und imation within the model
uncertainty). These coastal upwelling events can be identified through
the use of SST anomaly imagery. Likewise, offshore upwelling due to
deep-water intrusion and/or wind mixing can also be easily recognized
and ruled out by examining SST anomalies (1lu ex 2l 2011). Therefore,
these cases are unlikely to cause major problems in model spplications.
However, to create the best outcomes for the MPNN model, the SST
anomaly and bloom data should be used as a selection criterion to mask
the MODIS imagery prior to their inclusion in the model. In the future, &
scheme to combine the MPNN moded results and upwelling index
(through either nummml models or SST anomalies) may be im-

I d for op | use of the model In generating datly SSS
Imagery from MODIS in near real-time. Such applications may enhance
the capacity of the existing Virtual Buoy System (VBS, Hu et 0l 2014)
In monitoring coastal warter quality,

The MPNN model bas been thoroughly tested for the northem GOM.
One question ks whether it can be applied to other coastal reglons.
While each region may have its unique Rrs — SSS relationship, we be-
lieve that the general approach may be applicable as long as sufficient
local datn have been collected to retrain the model, Indeed, even
without such a local tuning, the application of the MPNN model (with
its default coefficients) to the East China Sea showed reasonable spatial
patterns of low-SSS nearshare waters and higher-SSS offshore waters
(see figures In Supplemental materials), which are consistent to those
reported in Hai et al, (2013).

Although the MPNN model has been shown applicable to the
nacthern GOM waters with known uncertainties, when applying it to
satellite data to derive SSS maps and time series, the limitation is not in
the mode] itself but in scarce MODIS data for nearshore waters, This is
clearly shown in Fig. 12d. The scarce MODIS data is due to not only

Revve Sewing of Fuiroment 200 (2017) 115-152

cloud cover but also sun glint, clowd-adjacent stray light, and other
factors such as Ime solar or view angles (Feng and Hu, 2016), Clearty,
future effort should also be dedicated to * " these low-quality
data in order to increase data quantity without sacrificing too much
data quality,

Finally, t all ical ANN models woark like a “black box™
mdtucamhelsoﬂmrﬂlmdlemodel developers have no way to test
them for other regions or other datasets, in this study the MPNN pro-
gram has been packaged as one ble file for others to test, where
a detailed description is also provided in the supplemental materials, It
should be straightforward o run the model under a MATLAB en-
vironment. Furthermore, although the present MPNN model was de-
veloped for MODIS data, it can also be applied to other sstellite data
with careful sttention to the slight difference between their band set-
tngs.

5. Conclusion

Accurate estimation of SSS [n cosstal waters and river plumes of the
northern GOM from optical remote sensing has been a chatlenging task
due 1o non-conservative mixing of CDOM and SSS, variable CDOM-SSS
relationship in different regions, and due to high uncertalntics in the
satellite-derived Rys and CDOM In turbid and dynamic coastal waters
(e, Mississippl River delta). En this study, with satellite-essimated Hrs
(at 412, 443, 488, 555, and 667 nm) and SST as Inputs, a neural net-
work based model (MPNN) has been developed and thoroughly eval-
uated for coastal waters of the northern GOM and for the offshore
Mississippl River plume. The model showed reasonably good perfor-
mance in the Mississippl-Atchafalaya Coastal region and Florida's Big
Bend region, and was capable of detecting and quantifying the offshore
Mississippi River plume. However, the operational use of this model in
generating daily MODIS SSS maps still requires efforts to rule out some
rare cases of coastal upwelling,

Notations

AOML  Atlantic O graphic & M Jogical Lab v
AOPs App Optical Prop

ANN Artificial Neural Network

BOEM  Buresu of Ocean Energy Munagunem

CDIAC  Carbon Dioxide Infl Center

CDOM  Colored Dissolved Organic Maner

CHL Chiorophyll-s Concentration

DEEPEND Deep-Pelagic Nekton Dynamics of the Galf of Mexico

FWC Flotida Fish and Wildlife Conservation Commission
FWRI Fish and Wildlife Research Institute

GOM Gulf of Mexico

GSFC  Goddard Space Flight Center

109s Inherent Optical Properties

LEDO  Lamons-Doherty Earth Observatory

MARS  Mississippl/Atchafalaya River System

MB Mean Blas

MLR Multl-variate Linear Regression

MNR Multi-variate Nonlinear Regression

MODIS  Moderate Resolution Imaging Spectroradiometer
MPNN  Multilayer Perceptron Neural Network

MR Mean Ratio

NCEI National Centers for Environmental Information
NDBC  National Data Buay Center

NEGOM  Noartheastern Gulf of Mexico

PCA Principle Component Analysis

pCO; Partial Pressure of CO,

g Determination coefficient

RMSE  Root Mean Square Error

Rrs Rzme Sensing Reflectance

SEAMAP & Area Monitoring and A Prog
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SeaWiFS Sea-Viewing Wide Field-of View Sensor

SMOS  Soil Motsture and Ocean Salinity

SNPP  Swomi National Polar.orbiting Partnership
SST Sea Surface Temperature

58§ Sea Surface Salinity

TA Taeal Alkalinity

TAMU  Texas A &M University

USF University of South Florida

VIIRS  Visual Infrured Imaging Radiometer Suite
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APPENDIX D:
A MACHINE LEARNING APPROACH TO ESTIMATE SURFACE OCEAN PCO:z2

FROM SATELLITE MEASUREMENTS

Chen, S., Hu, C., Wanninkhof, R., Cai, W. J., and Barbero, L. A machine learning approach to

estimate surface ocean pCO. from satellite measurements (submitted).
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A machine learning approach to estimate surface ocean pCO: from satellite measurements
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Abstract

Surface partial pressure of CO; (pCO2) is a critical parameter in the quantification of air-sea CO;
flux, which further plays an important role in quantifying the global carbon budget and
understanding ocean acidification. Yet, the remote estimation of pCO: in coastal waters (under
influences of multiple processes) has been difficult due w complex relationships between
environmental variables and surface pCOz. To date there is no unified model to remotely estimate
surface pCO: in oceanic regions that are dominate by different oceanic processes. In our study
area, the Gulf of Mexico (GOM), this challenge is addressed through the evaluation of different
approaches, including multi-linear regression (MLR), multi-nonlinear regression (MNR),
principle component regression (PCR)., decision tree, supporting vector machines (SVMs),

multilayer perceptron neural network (MPNN), and random forest based regression ensemble

* Corresponding author. Email: huc(@usf.edu
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(RFRE). After modeling, validation, and extensive tests under different scenarios, the RFRE model
proved to be the best approach, The RFRE model was trained using data comprised of extensive
pCO: datasets (collected over 16 years by many groups) and MODIS (Moderate Resolution
Imaging Spectroradiometer) estimated sea surface temperature (SST), sea surface salinity (SSS),
surface chlorophyll concentration (Chl), and diffuse attenuation of downwelling irradiance (Kd).
This RFRE-based pCO2 model allows for the estimation of surface pCO: from satellites with a
spatial resolution of ~1 km, It showed an overall performance of a root mean square error (RMSE)
of 9.1 patm, with a coefficient of determination (R?) of 0,95, a mean bias (MB) of -0.03 patm, a
mean ratio (MR) of 1,00, a unbiased percentage difference (UPD) of 0.07%, and a mean ratio
difference (MRD) of 0.12% for pCO: ranging between 145 and 550 patm. The model, with its
original parameterization, has been tested with independent datasets collected over the entire GOM,
with satisfactory performance in each case. The sensitivity of the RFRE-based pCO: model to
input errors of each environmental variable was also thoroughly examined. The results showed
that all induced uncertainties were close to, or within, the uncertainty of the model itself with
slightly higher sensitivity to SST and SSS than to Chl and Kd. The extensive validation, evaluation,
and sensitivity analysis indicate the robustness of the RFRE model in estimating surface pCO: in
most, if not all, GOM waters. The RFRE model approach was applied to the Gulf of Maine (a
contrasting oceanic region to GOM), with local model training. The results showed significant
improvement over other models suggesting that the RFRE may serve as a robust approach for other

regions once sufficient field-measured pCO: data are available for model training.

Keywords: surface pCOa, SST. SSS, Chlorophyll, Kd, satellite remote sensing, Gulf of Mexico
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Since the industrial revolution, the continuous consumption of fossil fuels has increased
atmospheric CO; by ~40% (Sabine et al., 2004; Solomon et al., 2007). Correspondingly, the
oceanic uptake of CO:z has resulted in a ~30% increase in ocean acidity and ~0.1 (pH units)
decrease of pH (Orr et al., 2005: Doney et al.. 2009: Sun et al., 2012; Pachauri and Meyer 2014).
These changes in the ocean have led to a decrease in marine biota and a degradation of marine
ecosystems (Widdicombe and Spicer 2008; Doney, 2010; Dickinson et al., 2012). Therefore,
understanding oceanic uptake of anthropogenic CO: and its changing rate are pressing concerns
of the research community. However, due to the dynamics of the partial pressure of surface water
CO: (pCO2), large uncertainties still exist in the quantification of regional air-sea CO; flux
(Takahashi et al., 2002, 2009, 2014; Sarma, 2003; Borges ct al., 2005; Hofmann et al,, 201 |; Sarma
ct al., 2012; Chen et al., 2013; Wanninkhof et al., 2013a). Therefore, accurate and synoptic
knowledge of surface oceanic pCO: is critical to studying the ocean’s role in global carbon cycling

within a changing world.

Satellite remote sensing, with its advantages of spatial and temporal resolution and coverage, has
become an important tool for synoptic estimation of oceanic surface pCO:, In principle, surface
pCO: is mainly controlled by four interrelated processes — a thermodynamic process, biological
activities, physical mixing, and the air-sea CO; exchange (Fennel et al., 2008; Tkawa et al., 2013;
Xue et al. 2016). These four processes are closely related to satellite-derived environmental
variables such as sea surface temperature (SST, “C). sea surface salinity (SSS, dimensionless),
surface chlorophyll-a concentration (Chl, mg m), diffuse attenuation of downwelling irradiance
(Kd, m™), as well as other vanables such as wind speed (m s7') and mixed layer depth (MLD, m)
(i.e.. Bai et al., 2015; Marrec et al., 2015; Moussa et al., 2016; Chen et al., 2016 & 2017; Lohrenz

et al., 2018, etc.). Specifically, the thermodynamic quantities, solubility of CO: and the
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dissociation constants of the carbonate system are mainly controlled by SST and SSS (Weiss, 1974;
Millero et al., 2006). SST and SSS can also be good tracers of water masses (1.¢., freshwater inputs,
upwelled waters) that have distinct carbonate characteristics such as total alkalinity (TA) and
dissolved inorganic carbon (DIC) (Lee et al., 2006; Yang et al., 2015). Because of the consumption
and production of CO; in the biological processes of photosynthesis and respiration, and the
depletion of TA and DIC in a 2 to 1 ratio in biological calcification (i.e., Reynaud et al., 2003;
Salisbury et al., 2008; Fay & McKinley, 2017), the biological effects on surface pCOz can be
implicitly interpreted from optical parameters such as Chl and Kd, Ocean mixing (both horizontal
and vertical) is closely related to MLD as well as SST and SSS; and, the influence of air-sea CO;
exchange on surface pCO: can be deduced from wind speed (Bates et al., 1998; Bates and Merlivat,
2001; Turk et al., 2013). However, in a specific occanic system, only one or two processes (and
thus their corresponding environmental variables), may dominantly control the changes of surface

pCO; (Bai et al., 2015).

Using the environmental variables mentioned above, several satellite-based surface pCO; models
have been proposed and developed in the published literature for different oceanic regions (both
open and coastal ocean waters). Of these, remote estimation of surface pCO: in the open ocean is
relative mature due to less variability in the open ocean’s environmental conditions than those in
coastal oceans. Both traditional empirical regressions (i.e., multi-linear regression (MLR), multi-
nonlinear regression (MNR)) (e.g., Stephens et al., 1995: Sarma, 2003; Ono et al., 2004; Olsen et
al., 2004; Rangama et al., 2005; Sarma et al,, 2006: Jamet et al., 2007; Chen et al., 2011) and
machine-learning based regressions (l.e.. multilayer perceptron neural network (MPNN), self-
organizing maps (SOMs)) (e.g., Telszewski et al., 2009; Friedrich and Oschlies, 2009; Nakaoka et

al., 2013; Moussa et al., 2016: Landshiitzer et al. 2014) have been used to model surface pCO: for
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open-ocean waters, with @ root mean square error (RMSE) of < 17 patm in most cases. For coastal
oceans, due to their complexity and dynamics in the biogeochemical and physical processes,
satellite mapping of surface pCO: is still a challenging task. Specifically, in addition to MLR,
MNR, and SOMs (e.g., Lefévre et al., 2002; Chierici et al., 2009; Zhu et al.. 2009; Shadwick et al.,
2010; Borges et al., 2010; Jo et al., 2012; Tao et al.. 2012; Signorini et al., 2013; Marrec et al.,
2014; Parard et al., 2014; Marrec et al., 2015; Chen et al., 2016), other empirical approaches such
as principle component regression (PCR) (Lohrenz & Cai, 2006; Lohrenz et al, 2010) and
regression tree (Lohrenz et al., 2018), and semi-analytical approaches (Hale et al,, 2012; Bai et al,,
2015; Chen et al., 2017) have been proposed for different coastal regions dominated by a single
oceanic process (river-dominated, upwelling-dominated, or ocean current-dominated), For these
complex regions, RMSE in the satellite-derived pCO; from these approaches is generally much

higher than for open-ocean waters, and it can reach 88.6 patm.

Despite these extensive efforts in establishing the various approaches or models, several problems
still exist in the current satellite mapping of surface pCOs. First, most approaches mentioned above
are investigated in only one oceanic region, often dominated by a single major oceanic process.
Although Signorini et al. (2013) proposed & MLR approach for the entire U, S. East Coast, in
which the East Coast was actually divided into different sub-regions through SOMs and the MLR
pCO:> model was parameterized for each sub-region with RMSE of 22.4 ~ 36.9 patm. Similarly,
Hales et al. (2012) developed a semi-analytical approach for the entire U, S. West Coast, but the
West Coast was divided into different sub-regions through SOMs, each with a unique pCO2 model
parameterization for each sub-region. The resulted RMSE varied between 6.6 and 65.0 patm.
Because such models are developed and parameterized for specific regions, any proposed models

to estimate pCO: for a certain ocean region may have poor applicability in other regions even afier
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local parameterization, In other words, at present there is no unified approach, let alone unified
model to remotely estimate surface pCO; for large ocean regions dependent on differing oceanic
processes such as Gulf of Mexico (GOM). The semi-analytical approach proposed by Bai et al.
(2015) showed potential to work for any oceanic waters, yet in practice it is difficult or even
impossible to separate and quantify the effects of each oceanic process (i.e.. horizontal mixing,
vertical mixing, biological activities, air-sea CO2 exchange) on surface pCOx with high accuracy
(i.e., RMSE < 10 patm). Further, in Bai's study, the semi-analytical approach was implemented
for the East China Sea, but tested solely with summertime data. Chen et al. (2017) adopted Bai’s
approach to the northern GOM with localized parametenization, and similarly, using summertime
data. Chen et al. (2017) found that the semi-analytical approach was not as good as an empirical
approach in terms of mode! uncertaintics and the model’s capability in estimating pCO> under

different oceanic conditions (i.e., coastal upwelling).

Therefore, the objective of this work was to develop an empirical approach with general
applicability to estimate surface pCO: from satellites for large oceanic regions encompassing
multiple processes, with improved model performance over those published in the literature. The
ultimate goal is to extend this approach 10 all regional oceans around the globe. Below we present
such a machine-learning based approach, namely a random forest based regression ensemble
(RFRE), The RFRE approach was sclected over many other approaches after extensive testing (see
Section 2.3.1 for details about performance of each tested approach). Using this approach. a pCO:
maodel with low uncertainties was developed for the entire GOM, a semi-enclosed subtropical sea
that encompasses many different oceanic processes (see Section 2.1 for details about the selection
of this study region). To show the general applicability of this approach, the RFRE was also tested

over high-latitude waters in the Gulf of Maine (G. Maine), which showed improved performance
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over other published approaches and therefore great potential for general applications in other

oceanic regions.

This paper is arranged as follows. First, the study region is briefly introduced to justify the selection,
followed by description of the satellite and field data used. Then, methods in data preprocessing,
madel development, accuracy assessment, model sensitivities to the errors of satellite variables are
described, Results of the monthly pCO; climatologic maps and time series of surfuce pCO» are
presented, Finally, the environmental variables used to model surface pCO: and to trace its
interannual variabilities, the general application of the approach to other oceanic regions, as well

as its advantages and limitations, are discussed.
2. Data and methods
2.1. Study region

The region of GOM, bounded by 18 ~ 31 N and -98 ~ -79° W, was selected 10 test the RFRE
approach for three reasons. First, neither regional satellite-based pCO2 models, nor a unified pCO;
approach or model, is available for the entire GOM. Most of the sub-regional studies (Lohrenz &
Cai, 2006; Lohrenz ct al., 2010; Chen atal., 2016 & 2017; Lohrenz et al.. 2018) are focused on the
West Florida Shelf (WFS) and the northern GOM waters, where large uncertainties exist in the
satellite-derived pCO: (i.e., variable RMSE of 12.0 ~ 50.2 patm). Second. due to lack of synoptic
and frequent mapping of surface pCO: over the entire GOM, it is still unclear whether the GOM
serves as a CO:z source or sink, as shown by the discrepancies in the published studies (Takahashi
et al., 2009; Coble et al,, 2010; Robbins et al., 2014; Xue et al,, 2014). Third, as a semi-enclosed
subtropical ocean, the GOM covers multiple regions with different dominating processes (i.¢.,

freshwater inputs from Mississippi and Atchafalaya River System (MARS), Loop Current, oceanic
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currents, mesoscale ocean circulation, occasional coastal upwelling) which control surface pCO;.
Therefore, if a RFRE-based unified pCO: model can be developed in this challenging environment,
it may suggest that the application of the RFRE approach to other oceanic regions may deliver

good results.
2.2. Data source
2.2.1. Field data

Over the past 16 years, there have been more than 220 cruise surveys that collected underway
pCO: data from the GOM waters during different seasons. We compiled all the publicly available
flow-through pCO: data measured in the GOM, as well as pCO: data collected from a fixed-
location buoy in the Mississippi River delta. The data used for model development and
independent validation are presented in Tables 1 and 2, respectively, with a general description of
the data source, data volume, time span and data range for each dataset. Collectively these data

represent the most complete pCO; dataset for the GOM,

Table 1. Underway and buoy pCO; measurements from different platforms in the GOM. These
surface pCO: data were collected at a depth of < Sm over all seasons. Only a small portion of these
measurements were found to have co-located and contemporaneous (+ 6h) satellite derived Chl,
Kd, SSS and SST data (last column). These surface pCO: data encompass typical variation range
in surface pCO: in most of the GOM waters, and these data were used 1o develop an optimal
satellite pCO2 model for the GOM through thorough tests of different empirical approaches. The

corresponding spatial distributions of the surface pCO: data are shown in Fig. 1.

Year pCO: range PCO2 range 2ol #of
Platfarm (Vessel/Buoy) Data Source covered (aatm (uatm)’ duia data’
Buoy CoastMS (20°N, 88.6°W) | NCEUNODC | 2009-2014 72.10-464,50 251.20-468.73 5132 47
RV Cape Hatteras NCEUNODC | 2009.2010 102.73-1708.85 145.32-437.27 26,794 748
8
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/S Explorer of the Sess NCEUNODC | 2002-2015 332.76-432.64 I3R68-41096 | 46833 | 5066
R/V Pelican NCEUNODC 2013 223.05-1836.05 IR219-387.84 | 47275 9
R/V Gordon Gunter AOML 2008-2016 68 66-148422 19529.538.3% | 202,718 | 7,679
MV Las Coevas AOML 2009-2012 199.08-528.60 27I87-486.89 | 30859 | 1238
R/V Marcus G. Langseth NCEUNODC 2013 3(M.55-536.31 350.93-370.08 2014 98
RV Pelican uD 2004-2006 181.29-1668 42 364.40-439.07 9.998 27
RV Brown NCEUNODC | 2003-2012 192.74-502 54 206,01-443.71 35622 128
RV Falkor TAMU 2012 170,00-452 20 371.1-419.2 6938 07
R/V Bold NCEUNODC | 2006-2007 84.04-2083.60 19R.90-448.55 | 364M5 295
F. G. Walton Smith NCEUNODC | 2011-2015 85.83-2773.92 280.13-85242 | 100,007 | 1309
Tatal 2002-2016 72.10-2773.92 145.32-55242 | 350,233 | 17,351

Dala statistics after matching with contemporaneous (£6h) satellite data.

In Table 1 (data used for model development). the pCO: data (collected between 2002 and 2016)
ranged between 72.10 and 2773.92 patm. These in situ pCO: field data were obtained from the
databases of NOAA National Centers for Environmental Information (NCEI) (formerly the

National Oceanographic Data Center (NODC) ads’) (Sutton et al,,

2012; Wang & Huang, 2014(a-¢); Millero et al,, 2016(a-d); Salisbury et al,, 2016; Takahashi et al.,
2016a; Wanninkhof et al.,, 201 1(a-f), 2013(b-g), & 2016d), NOAA Atlantic Oceanographic and

Mecteorological  Laboratory  (AOML)  (http://www aoml.noaa.gov/ocd/ocdweb/oce. html)

(Wanninkhof et al.. 2014(a-b), 2016(a-c, e-g)). University of Delaware (UD), and Texas A&M
University (TAMU). The corresponding spatial distribution of these pCO: data is shown in Fig.

la, with over 550,000 pCO: measurements in total.
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Field pCO, uam) _ Fickd pCO, fuatm)

Fig. 1. Spatial distributions of the surface pCO; measurements in the GOM along the cruise tracks.
(a) Cruise tracks from all data described in Table 1 (N=550.235): (b) Cruise tracks from the same
data but with co-located and contemporaneous (+ 6h) satellite Chl, Kd, SSS and SST (N=17.551)
data. Five sub-regions, each about 220 km by 110 km, are selected to examine the interannual
monthly time series of surface pCOz. Box 1 is near the Mississippi River delta, Box 2 is on the
West Florida Shelf, Box 3 is near the Loop Current, Box 4 is in the western GOM open waters,

and Box § presents the “dead zone™ along the Louisiana coast,

Typically, the ship-based surface pCO- data were collected at a depth of 5 m using a combination
of a gas equilibrator and a non-dispersive, infrared analyzer Li-COR™ (model 6251, or 6262, or
7000 or 840A) integrated in the shipboard flow-through seawater system, with a measurement
mterval of 2 or 3 min and an accuracy of 2 patm {or better). The buoy-based pCO: data were
collected at a depth of < 1 m using a Li-COR™ model 820 with a sampling frequency of every 3h
and an accuracy of 2 patm, The details of data collection, processing, and quality control can be

found in Feely et al. (1998), Sabine (2005), Pierrot et al, (2009), and Huang et al. (2015).

Table 2. Underway pC0O: measurements used for independent validation of the developed pCO:

model. These surface pCO:> measurements were collected from different cruises (N=10) by the

10
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research vessel of RV Gordon Gunter, None of these datasets was used in the pCO;z model training
and they were not included in Table 1. See section 3.2 and supplemental file for the spatial

distribution of cach cruisc dataset.

Crise 1D Soares Pate N | M || i
GUO%02_leg! AOML Ape. 2009 35433-412.10 | 358.33-30364 | 4027 | 976
GUO2_leg? AOML | Apr.and May 2009 | 3359.38-391.76 | 37357-38830 | 7234 | 771
GUI606_Legl AOML Sep. 2016 15742-48447 | 247.10-44821 | 5,626 | 1,051
GUIG0Y Leg2 AOML Nov. 216 33039 41209 33039 . 390,02 5,000 723

GUITO] Transit_Leg | AOML May, 2017 3264630913 | 32646- 39670 | 1231 | 420
GUI03_Leg! AOML Jul, 2017 25330-44321 | 372.00-44321 | 7285 | 1187
GUIT03 Leg2 AomL | PRS0 1993 asanr | 25346-37s8 | 7am | 725
GUITO Lega AOML Sep. 2017 33151031 | 311.02-42880 | 6308 | 1,548

GUIT0S_Transit_Leg | AOML Oct. 2017 .50 40843 | IR426-40531 | 1323 | 293

GUIT06_Transit_Leg | AOML Nov. 2017 327.26-403.66 | 327.26-38401 | 1352 | 630

‘Data statistics afier matching with P (+24h) Ilite datin

Similar to Table 1, Table 2 lists data from ten flow-through pCO: cruise surveys that were used
for independent model evaluation under different conditions, These cruises were conducted on the
NOAA research vessel — RV Gordon Gunter, and the pCO: data were obtained from the NOAA
AOML databases (Wanninkhof et al., 2014b & 2016f; Sullivan ¢t al,, 2017). Specifically, pCO;
data collected in Apr, and May 2009 (GU0902 legl and GU0902 leg2) were from the southem
and western GOM waters, ranging between 354.33 and 412,10 patm; data collected in Sep. and
Nov. 2016 (GU1606_Legl and GU1609 Leg2) and Sep. 2017 (GU1704 Leg2) were from the
northern and western GOM waters, ranging between 157.42 and 511.31 patm: data collected in
Jul and Aug. 2017 (GU1703_Leg2) focused on the northern GOM waters, ranging between 129.73
and 453.17 patm; and, data collected in May, Jul,, Oct., and Nov. 2017 (GU1701_Transit_Leg,
GUI703_Legl, GUI705_Transit_Leg, and GUI706_Transit_Leg) focused on the northern and
castern GOM, with a pCO; range of 253,30 — 443.21 patm. Note that all these cruise data in Table

2 represent independent datasets for evaluating the pCO> model performance as 99% of them were

11

134

www.manharaa.com




excluded in the model development. The spatial distributions of these pCO; datasets are shown in

Scction 3.2 and in the supplemental materials.
2.2.2. Satellite data

NASA standard daily Level-2 data products (version R2014.0) covering the GOM for the period
of Jul. 2002 — Dec. 2017 with a spatial resolution of ~1 km were downloaded from the NASA
Goddard Space Flight Center (GSFC) (https://oceancolor,gsfe nasa.gov/). These Level-2 data
products were derived from measurements by the Moderate Resolution  Imaging
Spectroradiometer (MODIS) on the Aqua satellite, and they included Chl, SST, and spectral
remote sensing reflectance (Rrs, sr™') in 7 bands between 412 and 678 nm. The spectral Rrs data
were used to calculate the diffuse attenuation coefficient at 488 nm (Kd, m™') using the semi-
analytical algorithm developed by Lee et al. (2005), and to calculate SSS using an empirical
approach recently developed by Chen & Hu (2017). The Kd product is often called Kd_Lee but
for brevity it is simply called Kd in this study, The MODIS-derived environmental variables
ncluding Chl, Kd, SST, and SSS were used as inputs of the surface pCO; model. Specifically,
SST was used to capture the thermodynamic effects, SSS was used to monitor the freshwater
characteristics of multiple river inputs, and Chl and Kd were used to quantify (implicitly) the

effects of biological activities on surface pCOx.
2.3. Methods
2.3.1. Data preprocessing

Time and location data from the in situ pCO: measurements were used to identify the co-located
and contemporancous MODIS-derived data products (Chl, Kd. SST. and SSS) between July 2002

and December 2017. These data were used in the RFRE pCO> mode! development.

12

135

www.manharaa.com




To obtain high-quality data, co-located and contemporancous field-measured pCO; and MODIS-
derived Chl, Kd, SST and SSS were selected using the following criteria. Considering the tidal
cycle characteristics (i.e., diurnal) in most regions of the GOM., a time window of = 6h between
field and MODIS measurements was used. Low-quality satellite data under various non-optimal
conditions (e.g., atmospheric correction failure, cloud, stray light, sun glint, etc.) were excluded
using the NASA standard quality control criteria (Patt et al., 2003; Barnes and Hu, 2015). Valid
satellite data within a 3%3 km box centered on the location of each in situ field pCO2 measurement
were extracted and averaged (Bailey and Werdell, 2006). Only if the number of valid pixels in the
3%3 km box was = 5 and its variance was < 10% the extracted data were used together with the
field measurement in the model development. After applying these quality control screenings,
17,551 conjugate observations of field-measured pCO: and satellite data products between 2002
and 2016 were determined to be valid and available for the RFRE pCO: model development (Fig.
1b). In this conjugated dataset, both the responsive varable (surface pCO:) and predictive
variables (SST, SSS, Chl, and Kd) show a typical variation of each, although some extremely low
and high field pCO» measurements in the nearshore waters (Fig. Ia) were excluded due to lack of
valid contemporaneous satellite observations. Specifically, in the model development, field-
measured pCO; ranged between 145.32 and 552.42 patm, MODIS Chl ranged between 0.03 and
53.96 mg m”, MODIS Kd ranged between 0.019 and 1.373 m™', MODIS SST ranged between

13.48 and 33.28 "C, and MODIS SSS ranged between 10.90 and 38.34.

The selection of the predictive variables (i.e., SST, SSS, Chl and Kd) was based on our previous
studies in the northern GOM and eastern GOM (Chen et al., 2016 & 2017). In Chen et al. (2016),
various experiments were conducted to examine the relationship between surface pCO:z and

different environmental vanables (i.e., SST, SSS, Chl, Kd, colored dissolved organic matter

136

www.manharaa.com




(CDOM)) in different forms (1.¢., linear scale or logs scale), From these experiments, logiof Chl),
logied Kd), and SST were proven to be the most effective variables in estimating surface pCO; in
WEFS waters. The study in Chen et al, (2017) found that in addition to SST, logio(Chl), and logip
(Kd), SSS was also a critical parameter in estimating surface pCO: in the northern GOM. This is
because of the large freshwater inputs with distinct carbonate characteristics from the MARS. In
addition, in both studies (and in many other studies), Julian day (Jday. or day of year) normalized
sinusoidally was used as a “tuning” parameter 10 emphasize the seasonal cycle of surface pCO:
(Friedrich and Oschlies, 2009; Lefévre et al,, 2005; Signormni et al,, 2013; Chen et al,, 2016 &
2017). Therefore, to estimate the surface pCO; for the entire GOM, all the four environmental

variables (SST, SSS. Chl, and Kd) as well as Iday should be included in the RFRE pCO: model,

One advantage of using contemporancous satellite-derived data (SST, SSS, Chl, Kd, and Jday)
instead of in situ data to train the RFRE pCO2 model, is that uncertainties in the satellite-derived
data will be implicitly included in the empirically-derived weights of the RFRE (i.e., model
coefficients). Then, when the same data products are used for surface pCO: predictions, such

uncertainties in the satellite-derived data, to a large extent, should be cancelled.
2.3.2. Model selection, and principle and training of RFRE

In the published literature, both empirical and semi-analytical approaches were used to develop
satellite-based surface pCO: models (see Section 1). The study in Chen et al. (2017) showed that
although semi-analytical approaches had the advantages of explaining oceanic processes explicitly,
their performance for northern GOM were not as good as those of empirical approaches, Therefore,
in this study, the commonly used traditional empirical approaches (i.¢., MLR, MNR, and PCR)
and machine-leaming based empirical approaches (i.e., MPNN, regression trée, regression
ensembles, and SVMs) were all tested using the same training dataset (Table | & Fig. 1b) and the

14
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same input variables. Among these trialed approaches, RFRE showed the best performance over
all others (Eq. 1), and thus, RFRE was sclected to develop the satellite-based pCO; model in this
study {(sec Section 3.1 for detailed model comparison results). One distinct advantage of the
machine-learning based RFRE approach is that it can approximate the nonlinear relationship
between predictive variables and targeted variable (i.e.. surface pCOz) without explicitly knowing

their functional dependence,
pCO; = fiinput variables)=frrre(SST, SSS, logiw(Chi), log(Kd), costJday/365)) (1)

RFRE is one type of ensemble learning which combines many weighted regression trees to
implement the random forest algorithm ( Breiman, 2001) in Matlab (R2017a). Individual regression
trees tend to overfit, and the RFRE takes the advantage of each regression tree via bootstrap
aggregation (or bagging) to reduce model overfitting and to improve model generalization
(Breiman, 1996; James et al,, 2013). In model training, regression trees in the ensemble grow
independently on a drawn bootstrap replica of the training dataset. In other words, each regression
tree can select a random subset of predictors to use at each decision sphit and can involve many
sphits in the random forest algorithm. This way, correlations among the developed regression trees
are greatly reduced, resulting in improved independency among the regression trees. In addition,
this subsampling allows an out-of-bag estimate of the predictive performance by evaluating the
predictions on those observations which were not used in the bootstrap sample. In this study, the
regression ensemble function “fitrensemble™ in Matlab (R2017a) was used to develop the
relationship between surface pCO: and environmental varables, There are two important
parameters to define this RFRE model structure: the minimum leaf size and number of learning
cyeles (1.¢., the number of regression trees). Leaf size refers to the number of data samples used in

cach node of a regression tree, and the minimum leaf size, thus determines the splits and depth of
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a regression tree. The number of regression learning cycles determines the number of regression
trees to be included in the RFRE. By trial and error, the minimum leaf size and the number of
leaming cycles of the RFRE were optimized to 8 and 30, respectively. With these settings, the
prediction accuracy of the RFRE model became stable, and the RFRE model were developed to

predict surface pCO».
2.3.3. Accuracy assessment

Two types of madel evaluation were used to quantify the performance of the RFRE model in

estimating surface pCOz in the GOM.

First, in the model development phase, the modeled pCO: were compared with the in situ field
pCO: in both model training and cross-validation. A 10-fold cross validation was used during this
phase, where the training dataset was randomly partitioned into 10 equal-size subsamples. Of these
10 subsamples, 9 subsamples were used to train the model, and the remaining subsample was
retained to test the maodel. The cross-validation process was repeated 10 times, with each of the 10
subsamples used exactly once as the validation dataset. The advantage of such a validation method
is that all observations are used in both model training and model validation to include all the
scenarios in the training dataset, and each observation is used for validation only once. Standard
statistical measures. including root mean square error (RMSE, both absolute and relative),
coefficient of determination (R”), mean bias (MB), mean ratio (MR), unbiased percent difference
(UPD), and mean relative difference (MRD) (Barnes & Hu, 2015), were used to quantify the

accuracy of the RFRE-estimated pCO:.

Second, for the developed RFRE pCO; model, extensive independent validation was conducted

using the ten cruise datasets listed in Table 2, In each cruise-based independent validation,
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satellite-derived surface pCO; along the cruise track from contemporancous (= 24h) daily pCO;
maps and from the pCO; composites of the cruise period were compared with the ficld-measurcd
pCO;. respectively. The 24h criteria was set based on the assumption that surface pCO: would not
show significant variation (i.e., < 5 pgatm) within 24h. In each comparison. statistics of RMSE, R,
MB, MR, UPD, and MRD were calculated. Also, the field-measured surface pCO: data along the
cruise track were color-coded (in the same way as the satellite pCO2 map) and overlaid onto the
pCO:2 composite to visually examine the consistency between the field-measured pCO: and the

satellite-derived pCOx.
2.3.4. Model sensitivity to errors in the input variables

The satellite input variables to the RFRE pCO: model (SST, SSS, Chl, and Kd) have inherent
uncertainties. In order to understand the sensitivity of the RFRE model to such input errors, the
uncertainties of each MODIS-derived variable were fed into the RFRE model. Surface pCO:
derived from the same RFRE using error-free inputs and error-added inputs were then compared

to determine the model’s sensitivity to input errors of each variable,

Errors in cach of the satellite-derived environmental variables were quantified based on the
published literature. Specifically, satellite SST has an uncertainty of < | “C (Hu et al., 2009), SSS
has an uncertainty of = 1 for 888 > 30 (Chen & Hu. 2017), Chl shows an uncertainty of 5%-30%
(Gregg and Casey, 2004; Bailey and Werdell, 2006; Melin et al., 2007) and 12-24% in waters of >
5m bottom depth (Cannizzaro et al., 2013), and Kd has an uncertainty of ~13% (Zhao etal., 2013).
To be consistent with the published studies (i.e., Chen et al., 2016; Lohrenz et al,, 2018), errors of
+17°C, £ 1,4+ 20%, + 20% were added in the MODIS-derived SST, SSS, Chl, and Kd, respectively,

to understand the error propagation to the satellite-derived pCO:.
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3. Results
3.1. Model performance

Using the same training dataset (Table I and Fig. 1b), all the empirical approaches described in
Section 2.3.2, including MLR, MNR, PCR, regression tree, regression ensembles, SVMs, and
MPNN were trialed with the same model inputs of SST, SSS, Chl, and Kd (Eq. 1) {se¢ Section
2.3.1 for the selection of these variables), Table 3 shows the model results of each approach.
Clearly the RFRE showed the best performance. However, the three regression trees (simple tree,
medium tree, and complex tree) and the MPNN (red in Table 3) also tended to be good models
with only slightly worse performance (i.e., RMSE < 20 patm), thus these models together with the
RFRE were selected as potentially good models. To confirm whether the RFRE model is indeed
the best one, based on the cruise dataset of GU1703_Leg2, independent validation was done for
each of the potentially good models selected in Table 3. The cruise GU1703_TLeg2 was used mainly
because the pCO; data were collected around the Mississippi River dela, which was the most
dynamic region in the GOM. Table 4 shows the comparison of these potentially good models, The
RFRE did show the best performance over others. Validation using several other cruise datasets in
Table 2 also showed that the RFRE had better performance than others, and the RFRE was

therefore selected in this study.

Table 3. Model comparison of different empirical approaches including traditional empirical
approaches (MLR. MNR, and PCR) and machine-learning based empirical approaches (regression
tree, regression ensemble, SVMs, and MPNN). The non-shaded statistics were derived from model
training, and the shaded statistics were derived from model validation. Models with an RMSE =
20 patm are shown in red and these models were further compared through an independent
validation (sce text), The random forest based regression ensemble (RFRE) model is highlighted
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i bold to contrast it as the best-performance maodel. All these models were developed using the

same dataset (see Table 1) and the same input variables, Each of them was optimized in the tests,

with the best results shown here. For models trained with regression tree, ensemble of regression

trees, SVMs, a 10-fold cross validation was implemented.

Approach Algorithm/Kernel function l—l “:f] RO MBI g 'é:_‘l' :‘,’:_;’ N
MIR N 26,35 (8.56%) | 0.53 000 AN 4.83 .03 X770
) 054 | w01 | o0 | 483 | el BT1S
MNR = 25,10 (7.66% 0.58 0.00 A1 4.32 A).34 8776
3470 00 | TOT a0 105 |
PCR = 2073 (8.68%) | 0.53 .00 J(_Ll +.89 .64 776
6. 0| 0S3 | ool | e | den | oes | &
Simpio tree 1471 A S52%) | 0.8 .00 oo 0.0 420 17,551
Sl TR 4o | 083 | 08 [ ton | oor | o 17,851
- B8012.61%) {195 000 A o 0n? 17.55
BOmaou 109 i i (1w Gamer | 001 | o | tan | 005 ] o [ES)
Combattos | 07 (1.53%) 01.9% 000 100 l).!)_l_ 0,02 17,54
- T A N I N 17351
o | 24.27 (6.33%) .67 -J 5.8 1196 A J0 -3.8_9' 17551
Ensemble of Piomest .66 060 | - 096 | 409 | 388 7.5
regressian trees Random forest (bapged | 668 204%) | 097 | 4103 o0 |06 | o8 7,551
trees) 900 (3T9%) | 095 | 063 | 100 | 007 | 04 17,551
Ve 27 9.73%) | 048 | 041 | nas 18 7.551
MI6OIA%) | 048 | 049 | 101 | 046 | 087 7,581
ic 2446 0. 20%) | 060 -1.18 A 0.2 10 7,55
Qoo [ 2437(723%) | 060 | <118 | 100 | 020 | 0.10 17.55
Cubic 27.38 (8.20%%) 0.50 11.54 047 -1&_5 22.54 17,
i £ 108290 T U Y Y
Fine ian 9.0612.91% 0.95 0402 Rl 0.07 0l 17,551
Qe 087 3 092 | 004 | To0 | nos | 014 755l |
AT .23 (S.Uﬂﬂ 10,76 -1 007 AN -0.13 ). 17,551
DAL (586%) | 074 | -1.03 | 100 | a2 | 003 17551
S 2309 (698%) | 0464 | 124 | 100 | 01 12 17551
Cambmna o 068 | oA | oo | oas | oo | irast
MPNN Levenberg-Margjuani sod 16 e3 2050 4,92 AN L(_I_d_i 0,08 014 11,01
Bayssisn [L98 (505 | 000 | 003 [ 100 | 0 XK

Table 4. Model results comparison with RMSE < 20 patm in Table 3 (red font) based on

independent validation using the underway pCO: data collected on cruise "GU1703 Leg2" (see

Table 2). This cruise data was used primary because it was collected around the Mississippi River

delta, the most dynamic region in the GOM. The random forest based regression ensemble (RFRE)

model is highlighted in red to contrast it as the best model performance. The RFRE model also

showed better performance than others when evaluated using other datasets listed in Table 2, Note
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that the difference in the number of data matchups (N) of cach approach is du¢ to the requirement

of the spatial homogeneity in the matchup sclection criteria (see Section 2.3.1),

Approach Algocithm/Kernel fanction BMSE _‘& MR "",2')’ “(',2;’ N
Simple trée : 1:?#:/.; 2818 | 0o | s | am 06

Regression tree Medium tree i,gﬁ?‘,’yi 389 | 0o | 080 | w2 18
Comples tree uff,’:,_ R

_é":‘:‘:"‘; Ramdom forest {bgyeed trees) P 20 | 1o | ane | om 725
SVM Fine Ciamssian (g.';';':) a0ds | oes | 22k | s 220

MPNN berg-Marquardt sed Bay ﬂf& , | M2 0 | 2o | 267 7

Fig. 2 shows the performance of the RFRE model in both model training and cross-validation,

color coded by data density (the number of data points in each pCO: interval of 2 patm). Clearly,

most of the data pairs of field pCO;z and modeled pCO: follow closely along the 1:1 line without

apparent outliers (see the red and green color). Statistically, during the model training, the RFRE-

maodeled pCO: showed good agreement with the field-measured pCO:2 with a RMSE of 6.68 patm

(2.04%), R? 0f 0.97, MB of -0.03 patm, MR of 1.00, UPD of 0.06%, and MRD of 0.08%. Similar

statistics were also found in the 10-fold cross validation (RMSE = 9.09 patm (2.79%), R* = 0.95,

MB = -0.03 patm, MR = 1.00, UPD = 0.07%, MRD = 0.12%),
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Fig. 2. RFRE model performance in estimating surface pCO; in the GOM in both (a) model
training, and (b) model validation, using the conjugate dataset described in Table | and Fig. 1b.
The data pairs are color coded by data density, which represents the number of data points at cach

pCO; interval of 2 patm.
3.2. Independent validation under different scenarios

To conduct independent model validation, in addition to the cross-validation in the model
development, the developed RFRE pCOz model was further examined to quantify its predictability
in estimating surface pCO; from satellites under different scenarios in the GOM, using 10 cruise
datasets collected over the GOM in different months (Table 2). For each cruise, the field-measured
surface pCO: dataset was independent from other cruises, and none of these 10 cruise datasets

were used in the model training above.

Fig. 3 shows the results based on the underway pCO: data collected from cruise GU1703_Leg2
between July 22 and August 05, 2017. This cruise mainly covered the Mississippi Delta and its
offshore area (Fig.3a). The field-measured pCO; showed dynamic variation with very low pCO;
values around the Mississippi river mouth and in the river plume, and relatively high pCO: in the
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oftshore  waters. Fig. 3b shows the comparison between field-measured pCO:  and
contemporancous satellite-derived pCOa. Clearly, the spatial and temporal variations of the field-
measured pCOz along the cruise track were well captured in the contemporancous satellite-derived
pCO:, with a RMSE of 18.88 patm (5.53%), MB of -1.22 patm, MR of 1.00, UPD of -0.16%, and
MRD of -0.01%. Furthermore, a 15-day MODIS pCO; composite map (Fig. 3a) covering the cruise
period also showed agreement with the field-measured pCO: with low pCO: values nearshore and
high pCO; values offshore, although the statistics is a bit worse due to the larger time difTerence

(RMSE = 37.65 patm (16.13%), MB= -1.22 patm, MR = 1.01, UPD = 0.31%, and MRD = 1.31%,

#0) .
450;-”"' S | Feirr
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Fig. 3. RFRE surface pCO:z model performance in the Mississippi River delta and offshore regions,
evaluated with underway pCO: data collected from cruise GU1703 Leg2 (Table 2). The underway
data was not used in the model training. (a) MODIS surface pCO; composite map for the cruise
period (Jul. 22-Aug. 05, 2017), with field-measured pCO: along the cruise track overlaid and color
coded in the same way as the MODIS image: (b) Comparison between field-measured pCO: and
contemporaneous (+ 24h) MODIS-derived pCO2; (¢) Comparison between field-measured pCO:

and MODIS-derived pCO: extracted from the MODIS composite map for the cruise period (a).
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The red dots with values of 0 on the X-axis in (b) and (¢) indicate that ther¢ are no
contemporancous MODIS-derived pCO: due to various non-optimal satellite observing conditions,

and ‘P1" and *P2" in cach panel represent the start and end of the cruise, respectively.

Fig. 4 is the validation result based on one cruise dataset (GUI606_Legl) collected in the
northwestern GOM as well as the Mississippi delta between September 03 and 15, 2016. Although
there were no strong river discharges during this cruise period, low field-measured pCO: values
were found in the nearshore region along the Louisiana and Texas coast with distinct increases
towards offshore waters (Fig. 4a). Similar to those found from cruise GU1703 Leg2 in Fig. 3,
MODIS-estimated surface pCO:; mimicked the variation patterns of the field-measured pCO: (Fig.
4b), with RMSE of 26.10 patm (7.57%), MB of -6.44 patm, MR of 0.99, UPD of -1.36% and
MRD of -1.10%. This agreement was also evident in the comparison between field-measured pCO:
and satellite-derived pCO: extracted from a 13-day composite map covering the cruise period (Fig.

4a & 4c), with lower pCO2 in nearshore waters than in offshore waters.
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Fig. 4. Same as Fig. 3. but the RFRE surface pCO: model performance was evaluated along the

Louisiana and Texas coast with underway pCO; data collected from cruise GU1606_Leg! (Table
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2). The underway data was not used in the model training, (a) MODIS surface pCO; composite
map for the cruise period (Sep, 0315, 2016), with field-measured pCO; overlaid and color coded
along the cruise track: (b) Comparison between field-measured pCO; and contemporaneous (+
24h) MODIS-derived pCOx: (¢) Comparison between field-measured pCO: and MODIS-derived
pCO; extracted from the MODIS composite map for the cruise period (a). The red dots with values
of 0 on the X-axis in (b) and (c) indicate that there are no contemporaneous MODIS-derived pCOa
due to various non-optimal satellite observing conditions, and ‘P1° and ‘P27 in each panel represent

the start and end of the cruise, respectively,

In addition to cruise GU1606_Legl, two other cruises (GU1704 Leg2 and GU1609 Leg2, see
supplemental file) also covered a similar region (i.c., northwestern GOM and the Mississippi delta).
In Fig. S1a, surface pCO: was measured on cruise GU1704_Leg2 in late September (17-31) 2017,
with cruise track almost exactly the same as cruise GU1606 Legl (Fig. 4). Similar to cruise
GUI606_Legl, the spatial variation in surface pCO: showed the same pattern with low pCOa
values inshore and high values offshore, but with less spatial contrast in surface pCO: possibly
due to reduced river discharge and land runofl. Again, agreement with similar statistics were found
between the field-measured pCO; and the satellite-derived pCO, extracted cither from the
contemporaneous (= 24h) pCO: maps or from the [4-day pCO: composite covering the cruise
period. Different from cruise GU1606 Legl and GU1704 Leg2, results in Fig. S2 were based on
a winter cruise (GU1609 Leg2) between November 03 and 14, 2016, which collected surface
pCO: from the Mississippi delta and offshore waters in the northwestern GOM. The surface pCO
in winter showed lower values than in summer, with much reduced spatial variation along the
cruise track. The comparison along the cruise track also showed agreement between MODIS

retrievals and field measurements with similar statistics.
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Fig. 5 is the results based on flow-through pCO: data collected from cruise GUI1703_Legl in the
castemn GOM waters between July 02 and 17, 2017, Field-measured pCO; from this cruise showed
large difference between the southern and northem GOM waters (Fig. 5a). In the southern waters,
surface pCO> was around 420 patm with little spatial variation, while in the northern part, under
the influence of the Mississippi River discharge, low surface pCOz with dynamic variation (250-
380 patm) was found. Additionally, this cruise also captured the low pCO: (=380 patm)
characteristics of the Mississippt river plume relative to the surrounding waters. Statistically, the
contemporaneous (+24h) satellite-derived pCO: agreed with the field-measured pCO: with RMSE
of 21,90 patm (5.40%), MB of -12.96 patm, MR of 0.97, UPD of -3.31%, and MRD of -3.15%
(Fig. 5b). Similar model performance was also found in the comparison between field-measured
pCO; and satellite-derived pCO: from the 16-day pCO: composite map of the cruise period
(RMSE = 20.62 patm (5.13%), MB = 12,66 patm, MR = 0.97, UPD = -3.06%, and MRD = -
2.92%, Fig. 5c¢). Specifically, the low pCO» values and their dynamic variation in the northem
coastal waters of the GOM and the low pCO: features in the river plume (which were not captured
(or not captured completely) in Fig., 5b due 1o the lack of contemporaneous (+24h) satellite
measurements, were well revealed in Fig, 5a & Se, Satellite-derived surface pCO: in both Figs. Sb
& 5¢ showed underestimation as compared to the field-measured pCO:, and this could be caused
by the time difference between field and satellite measurements. As mentioned in Section 2.3.3,
the 24h time window was selected by assuming insignificant surface pCO: variations within the
time window. However, in reality, waters in the river-dominated coastal region and along the edge
of the nver plume could vary in finer timescale (L.e., < 24h), in which case the satellite-derived

pCO: did not correspond to the same water masses as measured in the field.

148

www.manharaa.com




o
500 [+ Beldpcn, |
300 - ..Vh”‘uiu)):
|
§ )
450 2 aum |
g RMSE = 2190 paim (4417 UPD =<0 01%
T M~ 1204 g MIND < -1 4% -
W MR - a7 N«
400
— e ——
ll?'lll 708 07/ 0708 aurie 078 T/ IR(I6 eI
- Date (san'od) T
+ FeMplx
3”,\‘"'-0 J.um»’(m
4m
Sl
300 0 RMSE = 20462 jum (313 UPD = -306% {
e MI = 1208 gt MRD = -2.92% m
wo| ME7OY N=637

25

ll‘— - 4R e T Gemeee e e -
OHR UTAE UTI0R (TGN GTII0 (N2 @TII4 MG TN
(mniad)

Fig. 5. RFRE surface pCO:> model performance in the eastern GOM, evaluated with underway
pCO: data collected from cruise GU1703_Legl (Table 2), The underway data was not used in the
madel training, (2) MODIS surface pCO: composite map for the cruise period (Jul. 02-17, 2017),
with field-measured pCO; overlaid and color coded along the cruise track; (b) Comparison
between ficld-measured pCO: and contemporancous (£ 24h) MODIS-derived pCO2; (c)
Comparison between field-measured pCO; and MODIS-derived pCO; extracted from the MODIS
composite map for the cruise period (a). The red dots with values of 0 on the X-axis in (b) and (c¢)
indicate that there are no contemporaneous MODIS-derived pCO: due to various non-optimal
satellite observing conditions, and ‘P17 and ‘P2’ in each panel represent the start and end of the

cruise, respectively.

In addition to cruise GUIT03 Legl, threc other cruises (GUI701 Transit Leg,
GUI1705 Transit_Leg. and GU1706 Transit_Leg) in Table 2 also collected flow-through pCO;
from the eastern GOM. These data were collected in different months which represented different
seasonal characteristics of surface pCO2 in the GOM. The results, based on each of these three
cruise datasets, are shown in Figs, S3-S3, respectively. In Fig. S3, cruise GU1701_Transit_Leg

was conducted between May 05 and 08, 2017, In contrast to cruise GUI703_Leg] data in Fig, 5,
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there was no obvious Mississippi River plume during this cruise. Surface pCO; showed lower but
similar spatial variation from the southern to northern GOM waters, and such spatial variations
were well captured in both the contemporancous satellite-derived pCO; (RMSE = 10.78 patm
(3.04%), MB =4.97 patm, MR = 1.01, UPD = 1.39%, and MRD = 1.43%) and the satellite pCOz
composite map covering the cruise period along the cruise track (RMSE = 10.20 patm (2.81%),
MB =291 patm, MR = 1.01, UPD = 0.81%, and MRD = 0.85%). The cruise surveys used in Figs.
S$4 & S5 followed almost the same cruise tracks as shown in Fig. S3; one collected pCOz in October
2017 (Fig. S4) and the other in November 2017 (Fig. S5). Again, there was no significant
Mississippi River plume and little spatial variation in the field-measured pCO; during these two
cruise periods. In both cases, the satellite-derived pCO: (both contemporancous, (= 24h) satellite
pCO;, and pCO:; from satellite composite of the cruise period) showed high consistency with the

field-measured pCOs, with similar statistics as shown in Fig. S3.

Results in Fig. 6 are based on flow-through pCO: data collected from cruise GUO902 leg2
between April 21 and May 06, 2009, This cruise covered the western GOM, mainly the
southwestern and the northern offshore waters, From the spatial distribution of surface pCO: along
the cruise track (Fig. 6a) and its time series distribution (black dots in Figs, 6b & 6¢), surface pCO;
did not show much spatial variation (360~400 patm). For the contemporancous (£ 24h) satellite-
derived pCO;y, it showed almost perfect agreement with the field-measured pCO; with a RMSE of
4.39 patm (1.14%), MB of -0.80 patm and MR of 1.00, UPD of -0.21% and MRD of -0.21%.
Similar statistics were also derived for pCO: extracted from satellite pCO2 composite map

covering the cruise period.
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Fig. 6. RFRE pCO: model performance in quantifying surface pCOz in the southern GOM,
evaluated with underway pCO: data collected from cruise GU0902_leg2 (Table 2). The underway
data was not used for model training. (a) MODIS surface pCO: composite map for the cruise period
(Apr. 21-May 06, 2009), with field-measured pCO:2 overlaid and color coded along the cruise
track; (b) Comparison between field-measured pCO: and contemporaneous (+ 24h) MODIS-
derived pCO2; (¢) Comparison between field-measured pCO; and MODIS-derived pCO; extracted
from the MODIS composite map for the cruise period (2). The red dots with values of 0 on the X-
axis in (b) and (c) indicate that there are no contemporancous MODIS-derived pCO: due to various
non-optimal satellite observing conditions, and *P1" and ‘P2" in cach pancl represent the start and

end of the cruise, respectively.

Similar to GUO0902_leg2 in Fig. 6, cruise GU0902_leg] covered the other part of the western GOM
between Apr. 7 and 16, 2009, with surface pCO: between ~350 patm and ~410 patm, The
validation results from cruise GU0902 legl are shown in Fig, S6. The spatial and temporal
variations in surface pCO; were well captured in both the contemporancous satellite-derived pCO;

(RMSE = 8.89 patm (2.31%), MB = -4.42 patm, MR = 0.99, UPD =-1.17%, and MRD = -1.15%)
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and the satellite-derived pCO2 composite covering the cruise period (RMSE = 13,31 patm (3,39%),

MB = -6.63 yiatm, MR = 0.98, UPD = -1.74%, and MRD = -1.68%),
3.3. Model sensitivity

Fig. 7 shows the sensitivity of the RFRE pCO; model to the input errors of each satellite variable
(SST, SSS, Chl, and Kd). A visual interpretation of Fig, 7 indicates that the model is more sensitive
to input errors in SST and SSS than in Chl and Kd, and the errors introduced in cach case were

close to or within the uncertainties of the model itself,
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Fig. 7. RFRE pCO2 model sensitivity to changes in the input SST, S$SS, Chl, and Kd, based on the
dataset used to develop the pCO:2 model in Table | and Fig, 1b. The data pairs are color coded by
data density, which represents the number of data points at cach pCO: interval of 2 patm. Results
show that the pCO; model 1s tolerant to at least = | "C noise in the input SST, + | noise in the input
S8S, = 20% noise in the input Chl, and + 20% noise in the input Kd, and the pCO: model is more

tolerant to noise in Chl and Kd than in SST and SSS.

Statistically, with +1 "C errors added (Fig. 7a), the RFRE model showed slight overestimation,
with RMSE of 10.80 patm (3.46%), R* of 0.91, MB of 2.17 patm, MR of 1.01, UPD of 1.22% and
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MRD of 1.27%, With -1 "C errors added (Fig. 7a), the RFRE model showed slight underestimation
in surface pCOs, with RMSE of 10.13 patm (2.68%), R* of 0.92, MB of 0.99, UPD of 0.81%, and
MRD of 0.77%. These results suggest that the RFRE pCO: model responded to SST errors in a
positive way (an increase in SST would lead to an increase in surface pCOs, and vice versa), but
in both cases the model was insensitive to SST errors considering the model uncertainties

described in Section 3.1.

The sensitivity of the RFRE model to SSS was similar to SST, and in both cases of +1 and -1 errors
added into SSS, the response of the RFRE did not show great difference comparing to the
originally-modeled surface pCO:. Specifically, with +1 errors added in SSS, the RFRE model
showed slight overestimation in surface pCOz (RMSE = 12,57 patm (3.93%), R* = (.88, MB =
2.40 patm, MR = 101, UPD = 0.77%, MRD = 0.84%). With -1 errors added into SSS, the RFRE
model still showed little overestimation (RMSE = 12.06 patm (3.19%). R* = 0.89, MB = 0.18
patm, MR = 1.00, UPD = 0.07%, MRD = 0.12%). However, clearly for pCO: > 450 patm, the

newly-predicted pCO2 was obviously underestimated.

Unlike SST and SSS, the RFRE pCO: model showed little sensitivity to Chl, and the uncertaintics
introduced in the estimated pCO: by adding = 20% errors in Chl was < 7 patm (Figs. 7e & 7f).
Specifically, with 20% errors added, the newly-predicted pCO; was slightly underestimated
(RMSE = 5.28 patm (1.46%), R* = 0.98, MB = -0.13 patm, MR = 1.00. UPD = -0.02%, and MRD
=-0.01 %). With -20% errors added, the newly-predicted pCO2 was slightly overestimated (RMSE

=6.07 patm (1,75%), R? = 0,97, MB = 0.51 patm, MR = 1.00, UPD = 0.21%, and MRD = 0.23%).

Similar to Chl, the RFRE model also showed little sensitivity to Kd. In both cases of +20% and -
20% errors added in Kd, the newly-predicted pCO:> did not show much difference from the
originally-predicted pCO,. With +20% errors added in Kd, the model showed a RMSE of 6.27
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patm (1.95%), R? of 0.97, MB of 0.75 patm, MR of 1.00, UPD of 0.26%, and MRD of 0.28%.
With -20% errors added in Kd, the model showed similar statistics (RMSE = 7,70 patm (2.07%),

R* = 0.96, MB = 0.15 patm, MR = 1.00, UPD = 0.12%, and MRD = 0.14%).

Overall, the RFRE pCO: model did not show high sensitivity to the errors in each input satellite
variable including SST, SSS, Chl, and Kd. With errors added in each variable, the uncertainties
induced in the new-predicted pCO; were all close to or within the uncertainties of the model itself.
Since satellite data of cach variable were used directly in the model development, such
uncertainties were implicitly included in the developed model, and these uncertainties would be
cancelled to a large extent when applying the RFRE model to the same satellite data products. The

insensitivities of the RFRE pCO; model to Chl and Kd are further discussed in Section 4.1,
3.4. Seasonal and interannual variations of surface pCO2

Fig. 8 shows the monthly climatological maps of surface pCO: of the GOM based on the MODIS
data between July 2002 and December 2017, Fig. 9 shows the area-averaged monthly time series
of surface pCO;z in the GOM, Fig, 10 shows the interannual variations of surface pCO; monthly
anomalies (i.c.. monthly mean minus monthly climatology) in the study period. Generally, on
seasonal timescale, distinct seasonal pCO: patterns can be seen in both Fig. & and Fig. 9, with high
pCO:z in summer and lower pCO: in winter; on decadal timescale, there is small interannual
variability (e.g., within +10 patm) in surface pCO: over the GOM except in the northem coastal

waters (e.g., Box 1, Box 5, where anomalies are within 30 patm).
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O, (patm)

Fig. 8. Monthly climatology of surface pCO: in the GOM, derived from MODIS using the RFRE
pCO:2 model for the period between July 2002 and December 2017. These maps are valid only for

the GOM waters as described in Fig. 1.

In terms of spatial distribution, surface pCO; (Fig. 8) was characterized by relatively low pCO;
values (300-350 patm) along the northern GOM coasts (especially the Louisiana coast)
accompanied with low SSS in most months, This result is quite different from the results shown
in Xue et al. (2013), which found relatively high pCO: values (= 500 patm) in the Louisiana coastal

waters. The difference between the findings of this study and those of Xue et al. (2013) is possibly
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due to their overestimation in surface pCO; on the Louisiana shelf, In Lohreénz et al, (2018), similar
low surface pCO; was also found in this area, but with relatively higher model uncertaintics
(RMSE = 30 patm). Indeed, from the spatial distribution of field-measured pCO: data of the GOM
shown in Fig. 1a, low surface pCO: values (< 350 patm) were found along the Louisiana coast all
the year round. There were some extremely high pCO:z (> 1000 patm) values collected in the very
nearshore regions, but these high pCO: values were located in the estuaries, Due to the sharp
changes in water properties (i.e., SST, SS8S, TA, and DIC), there was a sharp decrease in surface
pCO: from estuaries 1o the adjacent coastal waters. Additionally, fewer low pCO: waters were
found between September and November due to the low river discharge (~35,000-10,000 m?/sec)
during this period. On the WFS, surface pCO: showed little spatial variation in cach month, with
low surface pCO; (~350 patm) in winter and high pCO; (~400 patm) in summer. This result agreed
well with the results shown in Chen et al. (2016). except that relatively high pCO; (500-350 patm)
was estimated along the nearshore waters of Florida between May and August in Chen et al. (2016)
but not here. In fact. water properties on the WFS are mainly controlled by oceanic currents and
winds (e.g., wind-driven coastal currents, Loop Current) with winter conditions favoring upwelling
(Liu & Weisberg, 2005 & 2012). The spatial distribution of field-measured pCO; on the WFS in
Fig. la also showed little spatial gradient from inshore to offshore waters. Due to the high
temperature of the Loop Current, relatively high pCO; was found in these waters during wintertime,
In winter and carly spring, the southern GOM showed relatively higher pCO: values than the
northern GOM, mainly due to its lower latitude (thus relatively higher SST). Between May and
October, the GOM waters become near isothermal with little spatial gradient in SST, and the
surface pCO: in the GOM-wide regions {except the northern coastal regions) showed almost

homogeneous distribution with slight spatial variation in each month.
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Time series of monthly surface pCO, between 2002 and 2017
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Fig. 9. Monthly surface pCO: time series in the whole GOM and in the five sub-regions annotated

in Fig. 1a. Errorbars in each time series plot represent the standard deviations of the monthly mean

of surface pCO;: in cach region. Box 1 is near the Mississippi River delta, Box 2 is on the West

Florida Shelf, Box 3 is near the Loop Current, Box 4 is in the western GOM open waters, and Box

5 presents the “dead zone" along the Louisiana coast,

In terms of seasonal variations, monthly time series of surface pCOa based on pCO:2 maps between
July 2002 and December 2017 of the entire GOM (black line in Fig. 9) showed high pCO: values
(~405 patm) in summer and low pCO; (=355 patm) in winter with a standard deviation of ~ £ 17
patm on average, Xue et al, (2013) also found comparable seasonal variation in the Gulf-wide
averaged pCO;, but with a relatively higher standard deviation (= 50 patm), Similarly, in Fig 9,
pCO: in the selected sub-regions of Box 2, Box 3, and Box 4, representing the WFS, Loop Current
and southwestern GOM, respectively, also showed similar temporal variation patterns although
with some differences in magnitude. For example, pCO: in the sub-region of Loop Current waters

(Box 3), was relatively higher than pCO: in the sub-regions of WFS and southwestern GOM in
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winter. Such difference is mainly caused by the warmer characteristics (thus higher SST) of the
Loop Current. The scasonal variation of the pCO; time series in the northern GOM was quite
different from that of the regions mentioned above. In the Mississippi River delta represented by
Box 1, pCO: showed lower values (-290-380 patm, + 23 patm) than most GOM waters (Fig. 8)
in all seasons. In addition to the general varniation patterns of high to low from summer to winter,
finer time scale variations were found in summertime, with a pCO: decrease in July or August in
most of the years. This decrease in surface pCOx was mainly attributed to the phytoplankton
blooms, induced by the nutrient-rich freshwater inputs through the MARS river discharge in the
spring (April to June). The depletion of nutrients restricted the continuous biological uptake of
surface water CO; and kept the surface pCO: from decreasing further (Huang et al,, 2012 & 2015;
Guo et al,, 2012). The resulted richness in oxygen and organic matter promoted the growth of
bacteria, which decomposed the organic matters (either from terrestrial river runoff or generated
from biological activities) in the water column and released CO: back to seawater (Gardner et al.,
1994 Cai et al., 2011; Cai, 2011). Therefore, surface pCO: tended to increase in late summer and
fall, and then decreased as the water became colder. Similar to the case shown in the Mississippi
delta, the representative sub-region of the Louisiana coast (Box 5) showed a similar variation
pattern in surface pCO; but with larger seasonal magnitude (~280-420 patm, £ 17 patm). The
region is the famous “dead zone™ in the GOM (Keul et al., 2010). In summertime, the
cutrophication and excessive utilization of oxygen cause hypoxia in this area (Rabalais et al., 2002;
Laurent et al., 2017), thus more CO: is released back to the seawater and, therefore, surface pCOa
tends to be higher as compared to the Mississippi delta. The finer time scale variation in surface
pCO: on the Louisiana Shelf {demonstrated by the two sub-regions around the Mississippi river

delta (Box 1) and the Hypoxta zone off the Louisiana coast (Box 5)), was also found by Lohrenz
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et al. (2018) but with higher standard deviation and variation, but was not found by Xue et al.

(2013).
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Fig. 10. Interannual variability of the modeled pCO: in the entire GOM (a) and the five sub-regions
(b-f) over the study period of 2002-2017. Monthly pCO: anomalies on the Y-axis in each panel
were derived by subtracting the monthly climatology from the monthly mean. In panels b & f. a
secondary Y-axis of SSS was added to show the corresponding interannual SSS anomalies in the

sub-regions of Mississippi delta (Box 1) and “dead zone” (Box 5). Box | is near the Mississippi
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River delta, Box 2 1s on the West Florida Shelf, Box 3 is near the Loop Current, Box 4 is in the

western GOM open waters, and Box 5 presents the “dead zone™ along the Louisiana coast.

In terms of interannual variation, overall, there is indistinguishable decadal trend in the monthly
pCO: anomalies (Fig. 10). Over the river-dominated coastal region in the northern GOM, surface
pCO: showed relatively larger interannual variability than in other GOM waters. Over the entire
GOM (Fig, 10a), the interannual monthly pCO: anomalies showed little variation of within = 5
patm, with negative (positive) values in most months before (after) the year of 2012, In the
Mississippi delta (Box 1) and “dead zone™ area (Box 5), due to the complexity and dynamics of
the biogeochemical processes in these regions, pCO: showed larger anomalies between -30 and 30
patm. For these two regions, it is found that the anomalies in SSS showed similar variation to
surface pCO; variation, indicating that SSS may control the interannual variations of surface pCO:2
in these regions. Different from the northern coastal waters, pCO: in other GOM waters (WES,
Loop Current, Southwestern GOM waters) represented by Boxes 2 ~ 4 (Figs. [0c-10e) showed
similar but slightly larger anomalies (within 10 patm) comparing to that of the entire GOM (Fig.
10a}, Similar to the interannual variations of pCO: over the entire GOM in Fig. 10a, in these
regions, the anomalies in surface pCO; tended to be positive (close and above zero) over the vears
since 2012, while the increasing trend is still indistinguishable considering the overall variations
of the pCO; anomalies in the study period. Generally, surface pCO; in the GOM tended to increase
but the increasing trend is not well captured in our data. In addition, the decadal variation here
could be part of the long-term trend (=30 years), or part of the decadal timescale fluctuation
(Thomas et al., 2008; Gruber, 2009: Mckinley et al., 2011: Fay & Mckinley, 2013). Yet it is
impossible to differentiate these two scenarios using our data. In the study of Landschiitzer et al,

(2013}, both positive and negative trends were found in surface pCO: of the GOM over the period
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of 1998-2007, leading to no apparent overall trend over the entire GOM. We also examined the
interannual variations of the four satellite-derived environmental variables (SST, SSS, Chl, and
Kd), and found no decadal trend. Because these variables were used to model surface pCO, it is

no surprise to see indistinguishable decadal trend in the modeled surface pCO: over the GOM.
4. Discussion
4.1. Which environmental variables to use in the RFRE

In this study, we used four environmental variables, including SST, SSS, Chl, and Kd, to model
surface pCO; in the GOM. These variables were selected based on our previous studies and other
studies in the published literature. In Chen et al. (2016 &2017), all these variables were proven to
be important and efficient in modeling surface pCO: in the GOM, although other empirical
approaches other than the RFRE were used. Indeed, SST and SSS are commonly used to capture
the effects of thermodynamics and ocean mixing, and Chl and Kd are used to implicitly quantify
the biological effect on surface pCO2. Because there is no known function between each predictive
variable and surface pCOz, a machming-leamning based RFRE approach was used to model the
unknown complex relationships between these predictive variables and surface pCO,. The RFRE
approach was selected after extensive comparison with other empirical approaches. The RFRE-
based pCO: model, after modeling training using extensive datasets. showed excellent
performance in estimating surface pCOx with little uncertainties (RMSE < 10 patm) for a large

dynamic range.

In section 3.3, a model sensitivity analysis showed that the response of the RFRE model to the
added errors in cach model input variable was close to or within the model uncertainties, with

relatively higher sensitivity to SST and SSS than to Chl and Kd. These results suggest that the
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maodel s insensitive to small errors (+-20%) in the satellite data products. Such insensitivity may
raise the question of whether true changes in surface pCO: can be captured by the model. For
example, while an increasing rate of 1.5 patm per year has been reported in atmospheric pCO2
(Landschiitzer et al., 2013). the model did not show any long-term trend in surface pCOz. Then
two fundamental questions arise: 1) because the model showed little sensitivity to small errors in
Chl and Kd, why are they still used in the RFRE model? 2) Can the mode! capture the long-term

trend of surface pCO:z in response to increased atmospheric pC0,?

Indeed, although the RFRE model is insensitive to small errors in the input Chl and Kd, it does not
mean that Chl and Kd are not important in modeling surface pCO: for two reasons. One. both Chl
and Kd were scaled logarithmically before being used in the model in order to account for their
log-normality in their large-scale distributions (Campbell, 1995). Then. their dynamic ranges were
“dampened™ after log transformation, and same occurred with the input errors. For example a 20%
error is transformed to an error of 0.08 (=log(1.2)). In comparison, the variations of Chl and Kd in
logio scale {and their errors) were much smaller than those in SST (13.48~33.28 'C, with 1 °C
error) and SSS (10.90-38.34, with 1.0 error). This explains why the RFRE model was more
sensitive 10 SST and SSS changes than to Chl and Kd changes, On the other hand, both Chl and
Kd carry information (implicitly) of biological activities, thus cannot be ignored in the model. In
fact, Chl and Kd showed strong negative correlations (Figs. 11a & 11b) to surface pCO; in the
northem GOM. In coastal waters, surface pCO: showed strong correlation with Chl, Kd, and SSS
(Fig. 10a. 10b. & 10d). indicating that the biological activities and freshwater inputs are the
dominant factors in controlling surface pCO: in these waters. On the other hand, in the GOM

oligotrophic waters and coastal areas with little freshwater inputs, SST appeared to be the dominant
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factor in controlling surface pCO: (Fig. 10c). Therefore, it is necessary to include all four

environmental variables in the RFRE pCO; model.

-0.75 050 -025 000 025 050 075

Fig. 11, Maps of correlation coefficients at 1-km resolution between Chl (a), Kd (b), SST (¢). SSS
(d), and surface pCOz, respectively. These correlations were derived from the interannual monthly

anomalies.

Then, because atmospheric pCO: was not used in the model explicitly, if changes in atmospheric
pCO: cannot be captured implicitly in one or more of the four variables (SST, SSS, Chl, and Kd),
it would be impossible for the RFRE pCO: model to capture the changes in the atmospheric pCO:

(~ 1.5 patm per year, Landschtitzer et al, 2013), mainly caused by the human activities (¢.g., fossil
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fuel burning). It is therefore desirable to include atmospheric pCO; n future modeling efforts in
order to better detecting decadal trends in surface pCO; under anthropogenic foreing, Nevertheless,
the work here introduces an empirical pCO; approach that is applicable to a large oceanic region
(e.g., GOM) with different dominant oceanic processes, making it possible to better understand
the spatial and seasonal variations in surface pCO: of the entire GOM, as compared to ship-based

measurements.
4.2. Implication for general applications over other regions

The results shown in Section 3 demonstrate that the RFRE-based pCO: model developed for the
entire GOM can be well applied to different regions of the GOM. This is true in both river-
dominated and current-dominated regions, both with low uncertainties (RMSE < 10 patm). One
question is whether this RFRE approach (not the model iself) can be applied to other oceanic
regions. To examine its general applicability to other oceanic waters, we tested this RFRE
approach on the G. Maine which was selected for two main reasons: First, the G. Maine shows
great contrast to GOM with relatively small riverine discharge (i.e., <1000 m*/sec from the largest
river — Saint John River) but strong semi-diurnal tidal mixing, as well as wide-open interactions
with the North Atlantic waters (i.c., Gulf Stream, Labrador Current), Second, it is located at a
relatively high latitude (41.7-46 "N, 71-64 "W), and rapid warming is found with an increasing
rate of 0.23 “C per year in SST since 2004 (Pershing et al., 2015). In addition to the resulting
ecological impact (1.e., decrease in fisheries), this warming would have direct impact on air-sea
CO: flux and long-term carbon cycling, However, the published study of satellite mapping of
surface pCO: over this region shows very large uncertainties (i.e. RMSE ~ 35 patm) (Signorini et
al,, 2013). Therefore, it would be significant if the RFRE approach could work in the G. Maine

with a much lower uncertainty.
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Surface pCO; data collected in the G. Maine between 2002 and 2016 (Fig, 12a) were compiled
from the global surface pCO; database (LDEO) (version 2015, Takahashi et al,, 2016b) and
matched with the MODIS data products (including SST, Chl. and Kd) using the criteria described
in Section 2.2.1. Here a time window of + 3h was used to account for the semi-diurnal tidal
characteristics in the G. Maine. The conjugate pCO; dataset (Fig. 12b) showed dynamic variation
range in each variable (field-measured pCOa: 202~558 patm; satellite SST: 1.6-25 'C; field-
measured SSS: 25-34 (note there 1s no satellite SSS available for the G, Maine at | km resolution);

satellite Chl: 0.26~19.9 mg m™; and satellite Kd: 0.05~0.68 m™).

Field pCO, (parm) Fueld pCO- (panm)

Fig. 12. Spatial distributions of the surface pCO: measurements in the Gulf of Maine along the
cruise tracks, (a) Cruise tracks from all data between 2002 and 2016 in all seasons (N=482,584);
(b) Cruise tracks from the same data but with co-located and contemporaneous (+ 3h) satellite Chi,

Kd and SST (N=4,559).

Before locally tuning a RFRE pCO; model for the G. Maine, we first tested the locally
parameterized MLR model proposed by Signorini et al. (2013) for the G. Maine. Similar to its

original results, the model was found to yield a RMSE of ~42 patm. Then we tested the RFRE

42

165

www.manharaa.com




maodel (Fig. 2), which was parameterized for the GOM, to the G, Maine. Poor model performance
was obtained (RMSE = 89.6 patm), suggesting that the effects of the input variables to surface
pCO:2 may work differently in the G. Maine than from the GOM. Because the RFRE-based pCO;
maodel is empirical and is locally-trained. it can only be applied to similar environments. Whereas
the GOM-trained RFRE model uses satellite SSS as an input to account for the effect of freshwater
mixing, in the G. Maine, because there is no relevant satellite SSS available at I km spatial
resolution, 1t is not practical to include SSS as a predictor. Furthermore, considering the relatively
small river discharge in this area and the poor correlation (R~0.07) between SSS and surface pCO3,
SSS may not necessarily be an effective predictor in surface pCO; in the G. Maine. Therefore, in
the G. Maine, the only satellite variables used as predictive variables to model surface pCO: were
SST, Chl, and Kd as well as Julian day. Similar to the GOM, using the same training dataset (Fig.
10b) and same input variables (SST. Chl, Kd. and Julian day), all the empirical approaches
described in Section 2.3.2 were also tested in the Gi. Maine. The RFRE approach proved to have

the best model performance in the G. Maine as well.

600 Model training 600 Model validation
550 a RMSE = 8.93 patm (2.54%) 550 b RMSE = 1221 patm (3.42%)
R« D97 Xy = R« 095 » 4
-~ 5“0 > - SUU s .
E MB = 0,11 juntm Lk £ MB = 0.07 jatm '
450 MR = 1.00 P 3 450 MR = L.OO
400 i i 400 ’
3 350, UPD = 0.13% 3 350 < UPD = 0.15%
& 350 ’ MRD = 0.16% E g0l MRD = 021%
ki: N=4.559 7 N = 4559
250 gt 250|
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Field pCO, (paim) Field pCO, (patm)

Fig. 13. RFRE model performance in estimating surface pCO: in the Gulf of Maine in both model

training (a) and model validation (b) using the conjugate dataset described in Fig. 10b.
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Fig. 13 shows the performance of the locally tuned RFRE in the G, Maine. In the model training,
satellite-derived pCO; showed good agreement with the field-measured pCO: with a RMSE of
8.93 patm (2.54%), R* of 0.97, MB of 0.11 patm, MR of 1.00, UPD of 0.13%, and MRD of 0.16%.
In the 10-fold cross validation, similar statistics were also derived (see Fig. 13b). We further
validated this locally parameterized RFRE model in the G. Maine using several independent
datasets, and similar results were found as in the validation shown in Section 3.2. These results
demonstrated the feasibility of the RFRE approach in the (. Maine once local parameterization
was achieved. As an example, Fig. 14 shows the monthly pCO2 maps in the G, Maine in 2013,
Comparing to the GOM, distinct and opposite seasonality with high pCO: in winter and lower
pCO; in summer is shown for the G. Maine, indicating different driving mechanisms of surface
pCO; in these two contrasting oceanic regions. In the G. Maine, strong vertical mixing during
wintertime brings large amounts of DIC to the surface. Although large amounts of nutrients are
also brought to the surface, due to low SST and poor light availability, there is no strong biological
uptake of CO:. In the summertime, more light is available, with warming of surface waters,
biological activities {i.e., algal blooms) become active and the corresponding uptake of CO2 begins

to draw the surface pCO: down,
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Fig. 14. Monthly surface pCO: of 2013 in the Gulf of Maine (latitude: 41.7-46.0° N, longitude: -
71.0 ~-64" W), derived from MODIS using the RFRE pCO» model, Large data gaps in the pCO;
map of Dee, 2013 were mainly caused by various non-optimal satellite observing conditions (i.¢.,

cloud, stray light).

In shor, although the RFRE-based model (with model parameterization developed for the GOM)
could not be directly applied to the Gi. Maine, the RFRE approach can still be applied to the G.
Maine with localized parametrization. The resulting model performance appears to exhibit
significant improvement over those published in the literature, This result strongly suggests the

potential of the RFRE approach in regional applications around the globe,
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4.3. Advantages and limitations of the RFRE

The extensive evaluation results in Section 3.2 suggest that for surface pCO: of 145~550 patm in
the GOM, the empirical RFRE model can estimate surface pCO: with an overall uncertainty of <
10 patm. Comparing to other empirical approaches (either traditional or machine-learning based)
tested in this study, the RFRE approach shows great advantages i estimating surface pCO: in
different environments of the GOM. Specifically, the northern GOM waters, with large amounts
of freshwater mputs from the MARS, have distinet and different carbonate properties than other
GOM waters. Most of the empirical approaches showed poor performance when applied to the
entire GOM., possibly due to their poor local parameterization in dealing with disparate water
masses. [n contrast, the RFRE approach presented in this study appears to work well in all these
different-processes-dominated regions of the GOM. Consequently, a GOM-wide RFRE pCO:
model is generalized, with the variable relationships between predictors and response variables
implicitly included in the empirical coefficients (i.e., weights of each regression tree). In addition,
the weak response of the RFRE pCO: model to errors in each of the satellite variables (i.e., RMSE
< 12 patm, see sensitivity analysis in Section 3.3) shows the model’s tolerance to input errors in
the satellite variables, Furthermore, a test of the RFRE approach mn the G, Maine (after local
parameterization) also shows better performance and significant improvement over other empirical
approaches, including the approaches tested in this study and those in the published literature, In
contrast, the GOM-parameterized RFRE model performs poorly in the G. Maine without local
parameterization; this indicates the intrinsic empirical nature of the RFRE approach. Overall, the
RFRE approach shows great advantages over other empirical approaches in satellite mapping of
surface pCO: in the two contrasting ocean regions of the GOM and the (. Maine. The flexibility

of the RFRE model in dealing with these two different oceanic processes indicates its likely
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potential to serve as a robust approach in estimating surface pCO; from satellites for other ocean

regions.

Although the RFRE-based pCO: model has shown to be applicable to most GOM waters with
relatively low uncertainties, due to its empirical nature, it is unknown whether it works for waters
with surface pCO: outside the 145~550 patm range. This limitation is caused by the scarcity of
valid MODIS data outside this range, although this range should represent the surface pCO; levels
of most GOM waters (Fig. 1a), Furthermore, even within this range, for empirical approaches the
maodel’s satisfactory performance does not necessarily indicate that the model is applicable in all
types of waters driven by different processes. However, because of the extensive dataset used to
train the model and another extensive dataset used to validate the model, the typical concern of
lack of data with empirical approaches may be eliminated. Indeed, the data used in training the
model consisted of > 220 cruise surveys in the past 16 years covering all seasons and water types
in the GOM, thus representing the most complete pCO: dataset for the GOM. Likewise, the
validation results from another similar comprehensive dataset, under different scenarios in the
GOM, suggest that the RFRE mode! should be able to estimate surface pCO: for most, if not all,
GOM waters. Similar conclusions may be drawn for the G. Maine, where most of the pCO;
collected between 2002 and 2016 were used to train and validate the RFRE model. Because only
a small amount of data were available in winter, the model performance for the G. Maine requires
further evaluation more wintertime field data become available. Likewise, pCO: in the GOM can
certainly be > 550 patm or < 145 patm (Fig. la) along the northern coasts and in the Florida Bay,
yet these data were not included in the model training due to the unavailability of contemporaneous
satellite data after quality control and application of the matchup criteria (see Section 2.2.1).

However, these extreme pCO: values only appeared in some of the very nearshore waters, and in
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practice these waters should be masked to avoid misinterpretation of the model results, In fact,
most of these waters have no satellite data retrievals due to various reasons (e.g., atmospheric

correction failure, straylight, land contamination. etc.), thus having little effect on the model results.

In addition to the model applicability range, due 1o its empirical nature and its machine-learning
based technique, the RFRE approach works like a “black box™ without explicit understanding of
the driving mechanisms between the input and output variables. Unlike the semi-analytical
approaches (1.¢., Bai et al,, 2015; Chen et al., 2017) which separate and explicitly quantify the
contributions of different processes to the overall surface pCO: (i.¢., river-ocean mixing, biological
activities, etc.), the RFRE approach quantifies all of them together. As a result, it is difficult to
explain clearly how cach process affects the variation of surface pCO:. On the other hand, because
different oceanic processes may not be independent from each other and they may collectively
drive the surface pCOs, it may be advantageous to treat all input variables as a whole in order to
achieve a better model accuracy. Indeed, the comparison between empirical and semi-analytical
approaches in Chen et al, (2017) did show that the empirical approach could produce better

estimates of surface pCO: than the semi-analytical approach under different conditions.,

Finally and most importantly, the satisfactory performance of the RFRE approach in the two
contrasting regions, the GOM and the G. Maine, indicates that the RFRE approach could serve as
a robust empirical approach for other ocean regions once local parameterization is obtained. Indeed,
a preliminary test indicated that if the training datasets of the GOM and the . Maine were merged
together, an RFRE model with the same parameterization for both regions could yield similar
madel performance statistics as those from the two separate models (Figs. 2 &11). This additional

test strongly suggests that the RFRE approach offers great potential for estimating surface pCO;

in different ocean regions.
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5. Conclusion

Accurate estimation of surface ocean pCO; from satellite remote sensing has been a challenging
task due to the different regional processes that dominate pCOz. Such processes are difficult to
made! with mechanistic approaches, and also difficult to model with traditional empirical
approaches because the predictor-response relationship can vary substantially across adjacent sub-
regions and because high uncertainties may exist in the satellite-derived intermediate data products
(SSS, Chl and Kd) in turbid and dynamic coastal waters. In this study, with satellite-derived SST,
SSS, Chl, and Kd as inputs, a random forest based regression ensemble (RFRE) approach has been
developed and thoroughly evaluated for a large, semi-enclosed sea - the Gulf of Mexico. The
RFRE-based model showed good performance with an overall uncertainty of < 10 patm and higher
uncertainty in the northern GOM than in the southern GOM due to the complexity and dynamics
of the Mississippi-Atchafalaya River system. This is the first time that a unified empirical pCOz
madel has been demonstrated to show consistent performance across many different water types
in the entire GOM. The RFRE approach used to test the G. of Maine indicates great potential for
the RFRE to be a robust approach for regional pCO: modeling in regional studies as long as
sufficient in situ field data are available for model training. Finally, future research needs 1o be
focused on improving the capability of the satellite-based RFRE pCO: model in tracing decadal

and long-term scale variations in surface pCO2 under anthropogenic forcing.
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Notations

AOML Atlantic Oceanographic and Meteorological Laboratory

CDOM Colored dissolved organic matter

Chl Surface water chlorophyll-a concentration, in mg m™

DIC Dissolved inorganic carbon, in pmol kg

Kd Diffuse attenuation coefficient of downwelling imadiance, inm™

G. Maine Gulf of Maine

GOM Gulf of Mexico

GSFC Goddard Space Flight Center

Jday Julian day

LDEO Global surface pCO; database collated by T. Takahashi of the Lamont-Doherty

Earth Observatory of Columbia University

MARS Mississippi and Atchafalaya River system
MB Mean bias

MLD Mixed layer depth

MLR Multi-linear regression
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MNR

Multi-nonlinear regression

MODIS/Aqua Moderate Resolution Imaging Spectroradiometer on Agua satellite

MPNN

MR

MRD

NCEI

NODC

R!

RFRE

RMSE

SOMs

SSS

SST

SVMs

TA

TAMU

Multilayer Perceptron Neural Network

Mean ratio

Mean relative difference

National Centers for Environmental Information
National Oceanographic Data Center

Partial pressure of surface water COs, in patm
Principle component regression

Coefficient of determination

Random Forest based Regression Ensemble, a machine learning technique
Rool mean square error

Self-organizing maps

Sea surface salinity

Sea surface temperature, in 'C

Supporting vector machines

Total alkalinity, unit: gmol kg

Texas A&M University
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uD University of Delaware

uPD Unbiased percent difference
WFS West Florida Shelf
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Dominant controls of surface water pCO; n different coastal environments

Shuangling Chen', Chuanmin Hu'*

' College of Marine Science, University of South Florida, 140 7th Avenue, South, St. Petersburg,

Florida, USA 33701
Abstract

Atmospheric pCO; has been increasing significantly since global industrialization. Satellite
observing systems and new algorithms allow for synoptic estimation of surface pCOs, which has
great advantages in quantifying the air-sea CO: flux and understanding ocean acidification.
However, most published satellite pCO: remote sensing algorithms are quite limited in capturing
the interannual variabilities in surface pCO: especially in the coastal ocean environments. To
improve the capabilities of satellite remote sensing in monitoring surface pCO: in such
environments, the driving mechanisms of surface pCO: over seasonal and interannual time scales
need 10 be well understood. As such, a tme series of in situ pCO: data, and other environmental
variables from field or satellite measurements along the coasts of the United States of America and
its termitories at different latitudes were analyzed by separating the effects of temperature and non-
temperature on surface pCO;. On seasonal time scales, surface pCO; tended to be dominated by
the temperature effect (pCOz_T) through sea surface temperature (SST) and wind speed (with
exceptions in special environments such as river-dominated) in tropical and subtropical oceanic
waters, and tended to be driven by the non-temperature effect (2CO2_nonT) in temperate zone, On
interannual time scales, both atmospheric pCO: and surface pCO: showed significant increasing

trends over short time scales (i.e., < 10 years), In contrast to the seasonal driving mechanisms in

* Corresponding author: huci@usf.edu
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surface pCO;, the interannual variabilities of surface pCO; was mainly controlled the non-
temperature effect (through air-sea CO; exchange via atmospheric pCO;z) in tropical and
subtropical waters but by the temperature effect (warming effect of SST) in temperate regions, It
was the first time that the dniving mechanisms of surface pCO: in various coastal ocean
environments over both seasonal and interannual time scales were thoroughly examined. This
study suggests that, to better capture the seasonal and interannual signals in surface pCO; from
satellites, atmospheric pCO2 needs 1o be considered in the surface pCO: remote sensing algorithms.
The non-temperature effect on surface pCO: especially the biological effects (e.g., algal blooms)

need to be further investigated in the future.

Keywords: surface pCO;, sea surface temperature, Chlorophyll, driving mechanisms, remote

sensing
1. Introduction

Since global industrialization, fossil fuel burning and land use change (e.g., deforestation) have
projected large amounts of carbon into the atmosphere. Based on the most recent report, in the past
decade (2007-2016), there were ~10.7 £1.2 Gg C yr' anthropogenic carbon released into the
atmosphere, with 4.7+0.1 Gg C yr' remaining in the atmosphere, 2.4 + 0.5 Gg C yr' absorbed
by the ocean, and the rest being taken up by the terrestrial biosphere (Le Quére et al., 2018). Asa
result, global warming, carbon cycling. and ocean acidification are rapidly becoming pressing
concerns for the environmental research community. To better understand the carbon cycling and
ocean acidification processes in the rapidly changing world, surface partial pressure of CO2 (pCO2)
is one of the key parameters to measure and study, Studies show that surface pCO; has been
increasing with an average rate of ~1.5-1.9 patm yr'' and variable rates between 1.2 = 0.5 and 2.1

+ 0.5 patm yr' in different occan basins (Takahashi ct al., 2009; 2014). However, these rates are
2
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for the open ocean waters, which is mainly controlled by the large-scale ocean circulations. Yet,
little is known about the interannual variabilities of surface pCO; in coastal oceans, duc to the
scarcities of field data measurements and the dynamic and complex biogeochemical and physical

processes in coastal regions.

Although the coastal ocean only represents ~7% of the global oceanic area, it accounts for ~50%
of the world’s net primary production (Muller-Karger et al., 2005). However, due to the inadequate
knowledge of CO; uptake or release from various ecosystems (i.¢., estuaries, salt marshes, coral
reefs, and upwelling shelves) in the coastal margins, coastal oceans are still the most controversial
regions in balancing the global budget of CO: (Chen et al., 2003). For example, Borges (2005)
found the coastal oceans behave as a CO;: sink at high, subtropical, and tropical latitudes, and a
CO: source at temperate latitudes, while Cai et al. (2006) suggested that the continental shelves
serve as a CO; sink at middle and high latitudes. and a source of CO: at low latitudes. Most of the
uncertainties in the quantification of air-sea CO: fluxes in the coastal oceans come from the large
variations of surface pCO: and its lack of spatial and temporal coverages from f[ield data

measurements,

In contrast to field data measurements, several recent studies proved the capabilities and
advantages of using ocean color satellite remote sensing in monitoring surface pCO: in coastal
oceans (e.g.. Lohrenz and Cai, 2006; Lohrenz et al., 2010 and 2018; Hales et al.. 2012; Signorini
etal., 2013; Bai et al., 2015). However, two major problems exist in these published pCO: remote
sensing algorithms. First, large uncertainties exist in most of these satellite-derived surface pCO:
(i.¢.. Root Mean Square Error (RMSE) = 20 patm). These large uncertainties are mainly caused
by the insufficiency of the defined regression formula in modeling the complex and unknown

relationships between surface pCO: and related environmental variables, Using multi-variate

3
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second order polynomial regression fit, Chen et al, (2016 and 2017) improved the accuracy in the
satellite-derived surface pCO; with reduced RMSE of < 12 patm, but the algorithms were only
locally tuned for the West Florida Shelf and northern Gulf of Mexico (GOM), respectively. Second,
most of the published 2CO: remote sensing algorithms were applied for the seasonal variations in
surface pCOz, while few of them were attempted to monitor the interannual changes in surface
pCO:. Recently, Chen et al. (under review) did such analysis for the entire GOM using an unified
pCO;: remote sensing algorithm and found that surface pCO2 anomalies in the GOM tended to be
positive (by ~ 5 patm) after 2012, This increase in surface pCO:3 is quite smaller comparing to the
increasing rate in atmospheric pCO;. To further verify this result and to increase the capabilities
of satellite remote sensing in monitoring surface pCO; under anthropogenic forcing, the driving
mechanisms in surface pCO: over interannual time scales need to be investigated and well

understood.

In the open ocean waters, the dominant controls of surface pCO: were attempted in several studies
on seasonal time scales (Takahashi et al., 2002: Bennington et al., 2009; Fay and McKinley, 2013
and 2017). Specifically, Takahashi et al, (2002) proposed a computational method to decompose
the seasonal variation of surface pCO» into two parts: one is caused by the temperature effect
(pCO2_T), and the other is caused by the non-temperature effect (pCO2_nonT). The temperature
cffect on surface pCO; is computed by perturbing the mean annual surface pCO; with the

difference between the mean and the observed sea surface temperature (SST, "C) using Eq. 1,

alnpco;

o =1y -
s = 0.0423° € ') in Takahashi et al. (1993).

based on the isochemical seawater experiments {

That's, a parcel of seawater with an annual mean pCO: value was subjected to seasonal
temperature changes under isochemical conditions, to determine if changes in the seasonal SST

(alone) would change the surface pCOz. Eq. 2 is the quantification of the non-temperature effect
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on surface pCO; (pCOz_nonT), in which the temperature effect is removed from the observed
surface pCO; by normalizing the observed pCO; to a constant annual mean SST. Changes in pCO;
from this component primarily come from change in total dissolved inorganic carbon (DIC,
pmol/kg) and total alkalinity (TA, pmol’kg). and it includes the net consumption of CO: by
phytoplankton, net TA change due to calcification and nitrate utilization, air-sea exchange of COy,
and variation of DIC and TA by vertical mixing of subsurface waters or horizontal mixing of
different water masses. In the open ocean, the non-temperature effect mainly refers to the net
biological effect. Using this method, Takahashi et al, (2002) found that, the seasonal amplitude of
surface pCO;7 in high latitudes (= 40° poleward) and equatorial zones was dominated by the biology
cffect (which refers to the non-temperature cffect, more exactly), and dominated by the
temperature effect in the subtropical regions. Similar findings were also shown in Fay & McKinley

(2017).

In contrast to the open ocean, because of the dynamic and complex biogeochemical and physical
processes in coastal oceans, the driving mechanisms of surface pCO: over seasonal time scales
could be different from the open oceans even at similar latitudes. However, such knowledge is
quite Himited in current studies. This study will Al in this research gap towards a better
understanding of the driving mechanisms in the seasonal and interannual variations of surface

pCO;, meanwhile it will also facilitate the future development of surface pCO: remote sensing

algorithms.
PCO:_T = pCOpanmiat moan) Xexpf0.0423(SSTo-SSTweun)] (n
pCO2_nonT = pCOxbe Xexpl0.0423(SSTiwean-SSTuns)] (2)
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Great efforts have been made to observe surface pCO; in the coastal ocean via the global time
series observation system (NOAA Pacific Marine Environmental Laboratory (PMEL) moored
pCO: systems) in the past decade to document the temporal changes in oceanic carbon, although
the observing network is still in its infancy. To address the questions described above and to
improve the quantification of surface pCO: from ocean color remote sensing. the objectives of this
study include: 1) Investigate the seasonal and interannual variations of surface pCOs in the coastal
ocean environments in tropical and subtropical and temperate zones; 2) Quantify the effects of
temperature and non-temperature components (pCO: T and pCO2_nonT) on surface pCO» and
analyze the dominant controls of surface pCO; at different latitudes over seasonal and interannual
time scales; and 3) Examine the comrelations between environmental variables and surface pCO-

components.

2. Data and methods

2.1. Data

2.1.1. In situ data time series

Table 1 provides a summary of the time series observations from buoy systems compiled for this
study. The corresponding geolocations of these buoys are shown in Fig. 1. These time series data
were collected by the NOAA PMEL carbon program

(https://waww. pmel.noas. gov/co2/story/Buoys tand-+Autonomous+Systems), and obtained from

the NOAA National Centers for Environmental information (NCEI)

(hitps://www node noaw. gov/ocads/'oceans/Moorings/) (Sabine et al,, 2010; Cross et al., 2014(a-c);
Sutton etal.,, 2010, 2011, 2013(a-d), 2014(a-b), and 2015). Basically, to assure sufficient temporal

coverage, only those buoys that have at feast two years' data collection were selected. As a result,
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ten buoys (C1-C10, where “C” represents Coastal Ocean) data collected along the coasts of the
United States of America and its territories were finally processed. These buoys covered various
coastal ocean ccosystems different latitudes. Generally, buoys C1-C5 are located in the tropical
and subtropical zones, and buoys C6-C10 are located in the temperate zone. Specifically, buoy
C1 and C2 were in coral reef environments, with buoy C1 deployed on the southwestern coast of
Puerto Rico and C2 positioned in the Cheeca Rocks, an inshore patch reef within the Florida Keys
National Marine Sanctuary; buoy C3 was located in the nearshore region of the Louisiana Shelf,
which was greatly affected by the Mississippi River discharge (river discharge rate of ~17,000 m’
s} and river plume with a sea surface salinity (SSS) range of 14.00-35.64, and buoy C6 was
deployed in the southwestern coast of the Gulf of Maine at a higher latitude than buoy C3, and it
was also affected by river discharge but at a greatly reduced magnitude (river discharge rate of
~0.27 m* 5"} with a SSS range of 22.56-33.38 and by strong tidal currents (<2 m s™'); buoy C4
was located in the Gray's Reef National Marine Sanctuary in the subtropical coastal ocean waters
at a slightly higher latitude of 31.399 °N than buoy C3, and it represents a general coastal ocean
environments (e.g., without coral reef and river discharges); Buoys of C5 and C7 were placed in
the coastal upwelling zones at different latitudes; and buoys of C8-C10 were located in the Gulf
of Alaska ecosystem, which is seasonally affected by the ice-melt freshwater inputs. In addition,
three open ocean buoys (01-03, where “0" represents Open Ocean) located in the oligotrophic
waters of Atlantic and Pacific were also selected because of their sufficient temporal coverage.
Buoys O1 and O2 are in the tropical and subtropical zones, and O3 is in the temperate zone. These
three open ocean buoys were mainly used as references for the analysis of the buoy time series

data (i.e., buoys C1-C10) in the coastal ocean.
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For each of the buoys, both atmospheric and surface pCO; were measured with a non-dispersive,
infrared analyzer Li-COR™ (model LI-820) (Sabine, 2005; Sutton et al., 2014c¢), The Li-COR™
data had an accuracy of 2 patm (or better) and a sampling frequency of every 3 h. Surface pCO:
data were collected at a water depth of < | m, and atmospheric pCO: data were collected at 1.2 m
above the sea surface. The details of data collection, processing. and quality control can be found
in Sabine (2005) and Sutton et al. (2014c¢). In addition, SST and sea surface salinity (SSS) data
were obtained using a CTD (SBE37, MicroCAT C-T Recorder) integrated in the autonomous CO:»

mooring system,
2.2. Satellite data

For each buoy listed in Table 1, a spatial area of 110km (N to S) by 110 km (W to E) covering the
buoy location was defined. Correspondingly. standard daily Level-2 ocean color data products at
spatial resolution  of 1-km (Version R2018.0) from Moderate Resolution Imaging
Spectroradiometer (MODIS) Aqua covering the defined area for the ime domain of the buoy data
(Table 1)  were downloaded  from NASA  Goddard  Space  Flight  Center

/). These Level-2 data products included ocean color data such as
Chlorophyll-a concentration (Chl, mg m™) and spectral remote sensing reflectance (Rrs, sr') at
visible bands between 412 and 678 nm. The spectral Rrs data were used to calculate the diffuse
attenuation coefficient of downwelling irradiance at 488 nm (Kg, m™') using the semi-analytical

algorithm developed by Lee et al. (2005).

In addition to ocean color data products, global daily wind data products at 10m above the sea
surface between 2005 and 2017 were obtained from the NOAA National Centers for
Environmental Prediction (NCEP) reanalysis dataset. This reanalysis dataset 15 a joint product

from the NCEP and the National Center for Atmospheric Rescarch (NCAR) with a spatial
8

205

www.manharaa.com




resolution of 2.5 degree. These wind data products are wind vectors (in w (W to E) and v (S to N)
directions), and daily wind speed were calculated from the u and v vectors and then interpolated

to the same spatial resolution (i.c., 1-km) as the ocean color data.
2.2. Methods
2.2.1. Data preprocessing

Time and location data from the /n sifu pCO; measurements were used to identify the co-located
and contemporaneous Chl, Ka, and wind speed data for each of the buoys histed in Table 1. These
data, together with the in situ time series of SST, SSS, and atmospheric pCO:, were used as

ancillary data for the investigation of the seasonal and interannual variation of surface pCO:.

To obtain high-quality data, contemporaneous field-measured pCO: and MODIS-derived Chl and
Ka for each buoy were selected using the following criteria. A time window of + 6h between field
and MODIS measurements was used, Low-quality MODIS data under various non-optimal
observing conditions (e.g., atmospheric correction failure, cloud, stray light, sun glint, ete.) were
excluded using the NASA standard quality control criteria (Patt et al., 2003; Bames and Hu, 2015).
Valid satellite data within a 3x3 km box centered on the location of each buoy were extracted and
averaged (Bailey and Werdell, 2006). To assure the satellite data quality, only if the number of

valid pixels in the 3x3 km box was = S and its variance was < 10%, the extracted data were used.

Similar to the extraction of Chl and Ky, the wind speed data were also matched for each buoy.
Since there was no detailed hour and minute stamps of the daily wind speed data products, valid
wind speed data within a 3x3 km box centered on the location of each buoy were extracted and

averaged for any daily wind speed data. as long as there was in situ pCO: measurements on that

206

www.manharaa.com




day. Again, to assure the matchup data quality, the extracted data were used only if the number of

valid pixels in the 3%3 km box was = 5 and its variance was = 10%.
2.2.2. Decomposition of surface pCO2

Basically, Eqs. 1 and 2 were used to decompose the temperature effect (pCO2_T) and non-
temperature effect (pCO»_nonT) on surface pCO: The pCO: T component is derived by
disturbing the annual mean of surface pCO: with seasonal SST relative to the annual mean SST.
The pCO2_nonT component is calculated by normalizing the observed pCO: to a constant annual

mean SST, in which the temperature effect was removed from the observed pCO:.

Therefore, to apply these two equations (Egs. 1 and 2), two terms are needed: the annual mean of
surface pCO: and SST. To calculate these two terms for each of the buoys listed in Table 1, all the
available in siru data in the time domain (from multiple years) of each buoy were used. Specifically,
for each buoy, first, the monthly means of surface pCO: and SST in each year were calculated
from the in situ daily measurements; second, the derived monthly means of each year were used
to calculate the monthly climatology (i.¢., the average of the multi-year monthly means) of surface
pCO:and SST; and finally, based on the monthly climatology of surface pCO> and SST, the annual
mean surface pCO: and SST were derived. Here, it should be clarified that, the monthly
climatology of surface pCO:z and SST does not mean the real monthly climatology (i.e., over = 30

years), in fact, they are the multi-year average of the monthly means in each year.

With the derived annual mean of surface pCO2 and SST for each buoy, Eqs. 1 and 2 were applied
to the in st data to derive the two components of surface pCOz: pCO2 T and pCOs_nonT,

Following the steps described above, the monthly mean of these pCO; components in each year,

10
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and their monthly climatology (i.¢., multi-year based monthly averages) were also derived for

subsequent data analyses.
2.2.3. Statistical analyses

To quantify the seasonal magnitudes of surface pCO:2 and its pCO2 components, their seasonal
maximum and minimum were derived first, Then the seasonal magnitude of surface pCO» was
computed using Eq. 3, and this seasonal magnitude represents the net seasonal variation of in situ
surface pCO;. The seasonal magnitudes of the pCO2 T and pCO: nonT components were also

computed similarly using Eqs. 4 and 5, respectively.

ApCO; = max(pCO2) — min(pCO:) (3)
ApCO: ¢ = max(pCO: 1) ~ min(pCO: 1) (4)
ApCO; wonr = max(pC Oz wut) — min(pCO; wont) (5)

The relative importance (R/) of the temperature and non-temperature effects was quantified by
normalizing the difference of seasonal magnitudes between pCO: T and pCO:_nonT with the

seasonal magnitude of surface pCO: based on Eq. 6.
RI = (ApCO2 7~ ApCO nor)iApCO: (6)

RI is an indictor to tell briefly about which effect dominates the scasonal variations of surface
pCO:. Generally, if R/ is positive, it means the effect of temperature changes on surface pCO:
exceeds the effect of the non-temperature (i.c., changes in TA and DIC), suggesting that the
temperature effect is a dominant driver of seasonal surface pC0O:, and vice versa. Besides, if R/ is
more close to 1 (-1) at one station comparing to other stations, it means the temperature (non-

temperature) eflect plays a more important role in modulating the seasonal changes of surface

11
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pCO; at that station. In contrast, if R/ is close to 0, it would suggest that these two compete
processes (temperature and non-temperature effects) plays comparable but opposite roles in

varying seasonal surface pCOz, thus they cancel with each other to a large extent,

To further understand the seasonal variations of surface pCOz and its driving environmental factors,
the correlations between surface pCO:z (as well as pCO:_T and pCO2_nonT) and the environmental
variables (1.¢., SST, SSS, Chl, Ky, and wind speed) were investigated, The correlations were
quantified by Pearson correlation coefficient (R) based on the time series data of the monthly
anomalies, which were derived by removing the climatological seasonality from the interannual
monthly mean. Only if the p value was < 0,05, the correlation R was considered as a significant

correlation,

In addition to the analysis of dominant drivers (1.e., temperature or non-temperature effect) and the
corresponding dominant environmental variables in the seasonal variations of surface pCO: in
different coastal ocean systems, to further understand the driving mechanisms in surface pCO; on
iterannual time scales, the interannual trends (if there is any) over short term time scales (i.c., <10
years) in surface pCOy, as well as atmospheric pCO; and environmental variables (1.e.. SST, SSS,
Chl, Ky, and wind speed) in these coastal ocean environments were also examined at a confidence

level of = 95%, based on the their time series data of interannual monthly anomalies.
3. Results
3.1. Seasonal variations of surface pCO: and its components

Following the steps described in Section 2.2, the seasonal variations of surface pCO: and its
components (pCOz_T and pCO:_nonT) for each buoy (Table 1) were derived (Figs. 2 and 3), and

their seasonal amplitudes were quantified (Table 2). Generally. it was found that, the temperature
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effect and non-temperature effect are in opposite phases with 6 months difference. Surface pCO;
was dominated by the temperature effect in the tropical and subtropical zones, and was dominated
by the non-temperature effect in the temperate zone. There are a few exceptions in some special
ocean environments (e.g., coral reefs, river-dominated. upwelling-dominated), where surface
pCO:2 showed irregular seasonality and both temperature and non-temperature effects play

comparable roles in modulating seasonal changes of surface pCO.
3.1.1. Tropical and subtropical zones

Fig. 2 shows the seasonal variations of surface pCO: and its components (pCOz T and pCO:_nonT)
of the buoys located in tropical and subtropical zones. From tropical to subtropical regions, surface
pCO: showed stronger seasonal signals with high values in summer and low in winter. The
seasonality of surface pCO: showed variable patterns in coastal oceans because of the particular

biogeochemical and physical processes at each station,

In open ocean waters (Fig. 2 and Table 2), surface pCO; in the tropical zone (represented by buoy
01 at 22.670 'N) showed very small seasonal variation with an amplitude of 22,22 patm,
corresponding to small changes in seasonal SST (23.7 - 26.5 "C). Similarly, both the temperature
and non-temperature components also showed very small seasonal changes with an amplitude of
44.48 patm and 23.29 patm, respectively. The seasonal variations of surface pCOz mainly follows
with the temperature effect (pCO2_T) with a relative importance factor R/ of 0.95. suggesting the
dominant controls of temperature effect on seasonal surface pCO:. In the subtropical zone
(represented by buoy 02 at 31,780 "N), surface pCO: also showed similar but stronger seasonality
(seasonal amplitude = 90.68 patm) comparing to buoy O1, with a R/ factor of 0,78. That’s, the
seasonal warming effect also dominates the seasonal variations of surface pCO3 in the subtropical

open ocean waters. At both stations, the non-temperature effect (pCOz_nonT) is about 6 months
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out of phase relative to temperature effect (pCOz_T). Although this competing non-temperature
cffect is not & dominant control of the seasonal pCO;, ¢learly it does play a role in modulating the
overall seasonal changes in surface pCO: with a reduced seasonal amplitude than without this
effect. These results are consistent with the findings in previous studies (Takahashi et al., 2002:

Ullman et al., 2009; Fay and McKinley. 2017).

Comparing 10 open ocean waters, surface pCOz in coastal oceans varied quite differently even at
similar latitudes or in the same kind of coastal ecosystems (Fig. 2 and Table 2). But generally,
similar to those found in the open ocean waters, pCO; T and pCO:z_nonT are ~6 months out of
phase. and surface pCO; is also primarily dominated by pCO: T in coastal regions except for
special coastal environments (e.g., coral reefs, river-dominated, upwelling-dominated). For
example, station C4 is located in a common coastal environment (i.e., with little river inputs,
without upwelling, no coral reefs). As a result, surface pCO; at station C4 followed closely with
pCO:2_T in phase with high »CO> in winter and low in summer, indicating that surface pCOz is
mainly controlled by SST over seasonal time scales. In fact, the overall seasonal variations of
surface pCO: and its components at buoy C4 is quite similar to those of buoy O2 in the subtropical
open ocean waters with the same relative importance factor R/ of 0.78. The major difference
between the two is that, surface pCO; at buoy C4 had a larger seasonal amplitude (154.37 patm at

C4 vs. 90.68 patm at O2) because of the active oceanic process in coastal oceans.

In the coral reef coastal environments (represented by buoy C1 and C2), surface pCO:z could show
quite different seasonal variations from that in tropical and subtropical oceanic waters. It is found
that, surface pCO: was mainly dominated by pCO: T at site CI (in tropical zone), while it was
mainly dominated by pCO:_nonT at site C2 (in subtropical zone), Specifically, at site C1, surface

pCO: had a seasonal amplitude of 60.26 patm, and a relative importance factor Rf of 0.63, The
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overall seasonal changes of surface pCO; was closely in phase with the pCO:_T, suggesting the
dominant controls of the temperature cffect in affecting scasonal surface pCO;. This result is
consistent with the published studies for the same coral reef environment (Gray et al., 2012), In
contrast, at site C2, the seasonal variation of surface pCO: follows the change of pCO: nonT
closely, with a larger seasonal amplitude of 227,94 patm than that at buoy C1 and a negative
relative importance factor R of -0.53. That's, instead of being dominated by pCO:_T, the seasonal

variation of surface pCO: at site C2 is mainly controlled by the non-temperature effect.

In the river-dominated coastal environment (represented by buoy C3), Surface pCO: showed
irregular and complex seasonal varations as expected. From January to September, surface pCO:
tended to be dominated by pCO: nonT, and October and December, it tended to be mainly affected
by pCO: T. The two competing cffects of pCO2 T and pCO; nonT resulted in a seasonal
amplitude of surface pCO; of 114.88 patm in this coastal environment. The relative importance
factor RI was -0.05, suggesting that the temperature and non-temperature effects played

comparable roles in affecting the overall seasonality of surface pCOx.

In the coastal upwelling ecosystem (represented by buoy C5), Surface pCO: varies from high to
low from spring to fall, and this variation was coupled in phase with the pCO; nonT with the
relative importance factor R/ of -0.90, suggesting the non-temperature effect was the major control

of the seasonal surface pCO..
3.1.2. Temperate zone

Fig. 3 is the seasonal variations of surface pCO: and its components (pCO:_T and pCO:_nonT) of
the buoys in temperate zones. Similar to the findings in tropical and subtropical zones, the

temperature effect and non-temperature were also ~6 months out of phase with cach other,
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suggesting their competing roles in varying seasonal surface pCOz. However, in contrast to the
results in tropical and subtropical zones, the seasonality of surface pCO: was found to be
dominated by the non-temperature effect in the temperate zone with a few exceptions in special

ocean environments where surface pCO: showed irregular seasonal patterns.

In the open ocean waters (represented by buoy O3, Fig. 3 and Table 2), surface pCO: did not show
clear seasonality from winter to summer (¢.g., no obvious sinusoidal variation patterns), As to its
pCO: components, both pCO2 T and pCO:_nonT showed strong and comparable scasonal
amplitudes {(seasonal amplitude of pCO: T = 127.2] patm, and seasonal amplitude of pCO:_nonT
= 125.71 patm) but in the opposite phase. Most likely, the two competing effects partially cancel
with each other to a large extent on seasonal scales, thus leading to little seasonal changes in
surface pCOx. In this oceanic environment, both the temperature and non-temperature effects play
important roles in affecting surface pCOa, with a relative importance factor R/ of 0.07. Based on
the pCO: data collected from the Weather Station “P™ (50° N, 145" W, which is ~23 km from buoy
03) in 1972-1975 by Wong and Chan (1991), Takahashi et al. (2002) also found similar seasonal
variation patterns in surface pCO; and its components, but with some difference in the seasonal
amplitude of surface pCO; (i.¢., surface pCO; amplitude = 20 patm in this study, and surface pCO;
amplitude = 50 patm in Takahashi et al. (2002)). Since the statistics in Takahashi et al. (2002) was
based on data collected in 1972-1975, and the present study is based on data collected in 2007-
2015, the ocean environment could have changed within > 30 years with the increase of

anthropogenic atmospheric pCO:.

In the coastal ocean waters (Fig, 3 and Table 2), surface pCO: showed low values in spring und
summer and high values in winter time at most stations, with some difference in the seasonal

patterns from station to station. Specifically, in the river-dominated region at buoy C6, although
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surface pCO; reached & minimum in spring and a maximum in winter, similar to the surface pCO;
at buoy C3 (around the Mississippi delta), it showed some finer irregular scasonal patterns (¢.g., a
sub-maximum in August). In details, surface pCO;z was in phase with pCO;_T between April and
August, while it was in couple with the variation of pCO: nonT in other months. These two
competing effects of pCO2_T and pCO2_nonT resulted in a seasonal amplitude of surface pCO:
138.22 patm and a relative importance factor Rf of (.29, suggesting that the temperature effect
plays a relatively more dominant role in controlling the seasonal variation of surface pCO: than at
station C3 (where R7 = -0.05). This is reasonable because the river discharge at this station was

way-less than that at station C3 (i.e., 17,000 m* 5™ vs. 0.27 m? s7').

In the coastal upwelling ccosystem, similar to the pCO: in the subtropical upwelling system at site
C5, surface pCO:; at site C7 also followed closely with the pCO: nonT in phase, with a relative
important factor R/ of -0.76, suggesting the non-temperature effect is the major control of the
seasonal surface pCOa. However, the seasonal vanation patterns of surface pCO:z is quite different
from that at C5. Here at C7, surface pC0Ox reached a minimum in summer and maximum in winter.
The different seasonal variation patterns of surface pCO: in these two upwelling systems were
mainly attributed to the difference of the balance between the biological uptake of CO; and

upwelling enrichment of CO2, and was discussed m Section 4.1,

In the coastal regions with seasonal ice melting, represented by buoy C8-C10 in the Gulf of Alaska
ecosystems, it was found that surface pCO» showed strong seasonal amplitude of 309.81 patm,
279.42 patm, and 168.28 patm, at station C8, C9, and C10, respectively. The seasonal pCO: varies
in couple with pCO:_nonT closely in phase, which suggests the dominant control of the non-
temperature effect over the temperature effect in surface pCO; over seasonal time scales in these

coastal environments, This result is quite different from the findings in the temperate open ocean
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waters (represented by buoy 03), where the two competing effects both dominated the scasonal
variations of surface pCO;, leading to little seasonality in surface pCO;. With the increase of
latitude from buoy C8 to buoy C10, the relative importance of the non-temperature effect seems
to increase with the relative important factor 8/ of -0.77, -0.80, and -0.84, for buoy C8, C9, and

C10, respectively.
3.2, Interannual variations of surface pCO:z

In addition to the seasonal variabilities, we also examined the interannual variabilities of surface
pCO: as well as atmospheric pCO: for each buoy in Table 1, with results shown in Figs. 4 and 5,
and Table 3. The interannual vanabilities of the surface pCO: components (pCO:> T and pCO:
_non'T) were also quantified to help find the dominant controls of the interannual changes in
surface pCO2. Due to the data limitation, the interannual trends analyzed here mainly refers to the
short-term (3-10 years) trend, which may differ from the long-term (i.e., > 30 years) trend signals.
In general, both atmospheric pCO: and surface pCO: and its components showed interannual
variation trends in most sites (with exceptions in some special environments) selected in this study.
It was found that, the interannual variabilities in surface pCO:; was mainly dominated by the non-
temperature effect in tropical and subtropical zones, and was mainly controlled by the temperature

effect in the temperate zone.
3.2.1. Tropical and subtropical zones

Fig. 4 is the interannual variations of surface pCO: and atmospheric pCO: of the buoys located in
tropical and subtropical zones, Generally, atmospheric pCO: showed significant increasing rates
(i.¢., 1.20~3.60 patm yr”' at p < 0.05) in all buoy stations. However, the corresponding surface

pCO; showed variable interannual signals in different ocean environments.
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In the open ocean waters from tropical (represented by buoy O1) to subtropical zone (represented
by buoy O2) (Fig. 4 and Table 3), atmospheric pCO: showed clear interannual increase with a rate
of 1.20 patm yr' and 1.94 patm yr' (at p < 0.05) over a short-term time scale of 2007-2015 and
2005-2007 at buoy O1 and O2, respectively. Correspondingly, surface pCO: also showed
significant interannual increase with a rate of 2.77 patm yr' and 5.76 patm yr' (at p < 0.05). It is
found that, the increase in surface pCO: was mainly resulted from the increase of the pCO2_nonT
(i.e., the interannual trend of pCO:_nonT is greater than that of pCO:2_T, see Table 3). However,
we did not find any strong and significant interannual trend in SST, SSS, and wind speed. While
considering the significance of the stable increase of the interannual atmospheric pCO:, we believe
that the dominant control of the non-temperature effect in the interannual trend of surface pCOa is
most likely attributed to continuous sink of CO: from air to the surface ocean waters over
interannual time scales under anthropogenic forcing. On the other hand, although the increase rate
of surface pCO; in subtropical zone is statistically over doubled than that in tropical zone, the
interannual trend of surface pCO; in subtropical zone was only based on 3 years” data (i.e., 2005-
2007). More data over longer time series are needed to verify this finding (see discussion in

Section 4.2).

In the coastal ocean waters at different latitudes (buoy C1-C5 in Fig. 4 and Table 3), atmospheric
pCO; all showed clear interannual trend at an increasing rate of 1,69-3,60 patm yr”' (at p < 0.05)
over a short-term scale (3-10 years). However, the interannual surface pCO; varied from region to
region. Nevertheless, In the coastal environment without coral reefs and river discharges
(represented by site C4), surface pCO:2 did show significant interannual trend at an increasing rate
of 2.97 patm yr' (at p < 0.05), and most of this interannual variability came from the pCO:_nonT

component {i.e., the interannual trend of pCO>_nonT = 3.44 patm yr™', and the interannual trend
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of pCO;_ T = -0.97 patm yr', see Table 3), suggesting that the non-temperature effect is the
dominant control of surface pCO; over interannual time scale, Interestingly, the surface pCO;
actually showed two interannual signals with a clear increase before 2012 (i.c., 2006-2012) and a
clear decrease after 2012 (2012-2015). Yet more data are needed to further verify this phenomenon

(See discussion in Section 4.2).

In the coral reef environments (represented by buoy CI in tropical zone and C2 in subtropical
zone), surface pCO;z and its components did not show any significant trend over years of 2009-
2015 in the tropical zone, While in the subtropical zone, surface pCO; showed a significant
increasing trend of 11.44 patm yr' (at p < 0.05) over the period of 2010-2015. This interannual
variabilities were found to be mainly dominated by the non-temperature effect pCOz nonT (see

Table 3).

In the river-dominated coastal environment (represented by buoy C3), no significant trend were
found in surface pCO: as well as its temperature and non-temperature components (i.e., pCO: T
and pCOz_nonT). In fact, there is only a few months’ data available over the period of 2000-2014.
Therefore, the results derived here may not be representative for the real situation, and more data

are needed for further examination (see discussion in Section 4.2),

In the coastal upwelling environment (represented by buoy C5), surface pCO: showed large
interannual variability mostly within + 50 patm but without clear interannual trend over the period
of 2010-2015. However, significant and comparable interannual trends were found in both
pCOs T (rate = 8,17 patm yr') and pCO:_nonT (rate = -8.13 patm yr™') in opposite directions,
Thus it seems these two competing effects canceled with each other to a large extent over
interannual time scales, resulting in little interannual variabilities in surface pCO:, It s noticed that
surface pCO; scems to show an increase in the period of 201-2012 and a decrease over the years
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of 2012-2013, but the data was very noisy and more data over longer time series are required to

further analysis {see discussion in Section 4.,2),
3.2.2. Temperate zone

Fig. 5 is the interannual variations of surface pCO: and atmospheric pCO: of the buoys located in
temperate zone, Again, atmospheric pCO: were found to be increasing with significant increasing
rates (i.e., 1,20~3.60 patm yr’' at p < 0.05) in all buoy stations, and the corresponding surface

pCO; also showed significant increase except a few special ocean environments,

In the open ocean waters (represented by buoy O3, Fig. 5 and Table 3), surface pCO: showed
slight but insignificant increasing trend (0.57 patm yr'*). However, the two competing components
of pCO:2 _Tand pCO: _nonT did show significant but opposite trends with a rate of 5.38 patm yr-
"and -4.60 patm yr”', respectively. Thus it seems that these two competing components canceled
with each other to a large extent, leading to little interannual trend in surface pCO2, and statistically

the slight interannual increase was mainly attributed to the temperature effect,

In the river-dominated coastal environment (represented by buoy C6, Fig, § and Table 3), similar
to the results found in subtropical zone (i.e., C3). there was no significant trends shown in surface
pCO; as well as its temperature and non-temperature components (CO: T and pCO2 _nonT).
However, different from buoy C3, here the statistics were based on data collected from each month
over 9 years (1.e., 2006-2014), so there should not be large uncertainties in the derived surface
pCO: anomalies. Considering the dynamics of river discharges to such coastal ocean environment,
it seems that, the interannual variabilities of surface pCO3 in this coastal environment was mainly

driven by the river discharges, despite of the anthropogenic forcing of the pCO: increase in the

atmosphere.
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In the coastal upwelling environment (represented by buoy C7, Fig, 5 and Table 3), in contrast to
the phenomenon at buoy CS5, surface pCO; here showed a significant decrease with a rate of -5.69
patm yr' over the years of 2006-2015, despite of the interannual increase in atmospheric pCO,.
Meanwhile, both pCO: T and pCO:_nonT showed significant trends with an increase rate of 2.32
patm yr~' and a decrease rate of -7.98 patm yr-', respectively, suggesting that the non-temperature

effect is the dominant control of surface pCO: on interannual time scales.

In the coastal regions with seasonal ice melting (represented by buoy C8-C 10, Fig. 5 and Table 3),
surface pCO: all showed significant increasing trends at variable rates of 24.97 patm yr', 10.68
patm yr', and 5.37 patm yr'', at sites C8, C9. and C10, respectively. At site C8, the statistics was
based on data in 2013-2016, it is found that, both pCO: T and pCO: nonT showed positive
interannual increase with a rate of 6.54 patm yr', and 15.56 patm yr', respectively, but the
increase of pCO2 _non'T was insignificant (i.e.. p > 0.05). Therefore, the extremely high increasing
rend in surface pCO: at site C8 is skeptical. Considering the significance of the interannual
increase of pCO2 T. we believe the increase in surface pCOx was mainly controlled by the
temperature effect (see discussion in Section 4.2). Similarly, it was found that the significant
interannual increases of surface pCO; at sites C9 and C 10 were mainly attributed to the significant
increase in pCOz T, suggesting the dominant control of the temperature effect in the interannual

surface pCO; in these coastal ocean environments (see discussion in Section 4.2),
4. Discussion
4.1. Driving mechanisms in seasonal surface pCO2

As shown in Section 3.1, over seasonal time scales, surface pCO; was found to be mainly driven

by the temperature effect in tropical and subtropical zones and was mainly controlled by the non-
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temperature effect in the temperate zone with exceptions in a few special environments (¢.¢., coral
reefs, river-dominated, upwelling-dominated). It was casy to understand the temperature effect
was mainly related to SST and environmental variables that are closely related to SST such as
wind speed. While for the non-temperature effect, it is not clear that which environmental variable

is important in modulating this effect.

In fact, the non-temperature effect is the overall effect of biological activities (e.g., net CO;
utilization, net TA change due to carbonate production and nitrate utilization), ocean mixing
between different water masses that are characterized by different carbonate properties (i.c.,
changes in DIC and TA), and air-sea CO: fluxes. Yet it is very difficult to separate and quantify
cach of these non-temperature cffect because of the interactions among them. Therefore, to help
better understand the dominant environmental variables in affecting the non-temperature effect on
surface pCO: over seasonal time scales and to improve the accuracy of satellite remote sensing of
surface pCO;, various environmental variables were used as proxies of different biogeochemical
and physical processes in affecting surface pCO.. Specifically, optical parameters such as Chl and
K are used as proxies of the biological productivities, atmospheric pCOz and wind speed are used
to approximate the effect of the air-sea CO; exchange, SST, SSS, and wind speed are used as to
indicate the effect of ocean mixing. The correlations between these environmental variables and
surface pCO; as well as its components (pCO:_T and pCO;_nonT) were analyzed in details (Table

4).

In the tropical and subtropical ocean waters, surface pCO:2 was mainly dominated by the
temperature component pCO: T (i.e., buoy 01-02, C1, and C4, see Section 3.1.1), and strong
correlations (i.ce., R = 0.9) between pCO: T and SST were found with consistence (Table 4),

Correspondingly, wind speed also showed significant negative correlations with pCOz T in these
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ocesn environments, suggesting wind-driven ocean mixing plays a role in modulating pCO>_ T and
thus surface peo2. It should be clarified that, the dominant control of temperature effect does mean
the unimportance of the non-temperature effect. In fact, both effects are important in modulating
the overall seasonal variation of surface pCOs. In these ocean environments, significant
correlations were found between pCO:2_nonT and atmospheric pCO», suggesting the contribution

of the air-sea CO: fluxes to the seasonal variations of pCO2_nonT, and thus surface pCOx.

In the temperate ocean waters, surface pCO> was mainly driven by the non-temperature effect
pCO:2 nonT (i.c., buoy C7-C10, see Scction 3.1.2). However, the non-temperature cffect refers to
different oceanic processes in different ocean environments. For example. the non-temperature
cffect mainly refers to upwelling at station C7, while it mainly refers to the seasonal ice-melting
and mixing between the freshwater and oceanic waters at stations C8-C10. Specifically, for the
buoys (i.e., C8-C10) located in the Gulf of Alaska which is affected by seasonal ice-melting, SSS
can be < 20 (see Table 1). However, we did not find any significant correlations between
pCO:2_nonT and SSS except at station C9 (R = -0.43). Because of the cold water characteristic of
the ice-melting freshwater, we did find significant negative correlations found between
pCO; nonT and SST. In the open ocean waters (represented by buoy 03), both pCO: T and
pCOz nonT play comparable but competing roles in modulating seasonal surface pCO; (see
Scction 3.1.2), For this occan environment, pCO; nonT showed strong correlations with SST, SSS,
and wind speed, with R of -0.88, 0.66, and 0.31, respectively, suggesting the cffect of ocean mixing
on the non-temperature effect of surface pCOx. In addition, pCO>_non'T also showed significant
correlations with atmospheric pCOz, thus the air-sea CO: fluxes also contributed to the seasonal
variations of pCO:_nonT and thus surface pCO,. On the other hand, SST, SSS and wind speed

also showed strong correlations with pCO:_T but in the opposite directions as with pCO:_nonT,
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with R of 0.99, -0,67, and -0.28, indicating the ¢ffect of ocean mixing as well as thermodynamics

on the temperature effect of surface pCO;.

However, as shown in Section 3.1.1, there are a few special coastal ocean environments are found
to have irregular seasonal signals in surface pCOa. In the coral reef environment at buoy C2, the
non-temperature effect (pCO2_nonT) dominated the seasonal surface pCO; (R = -0.53). As a
result, pCO2_nonT showed a significant negative correlation (R = -0,31) with SSS and significant
positive correlation (R = 0,16) with wind speed (Table 4), suggesting that the effect of ocean
mixing on the carbonate properties (e.g., TA and DIC). Meanwhile, atmospheric pCO: also
showed a significant positive correfation (R = 0.37) with pCO:z non'T, indicating the contribution
of air-sea CO: fluxes to the non-temperature pCO; component (pCO:_nonT). In fact, this effect is
also visible in Fig. 2 for station C2, where the seasonal pCO:2 nonT co-varies with the seasonal

atmospheric pCO: to some extent.

In the river-dominated regions in both subtropical zone (C3) and temperate zone (C6), surface
pCO; was found to be dominant by the temperature effect in summertime and by the non-
temperature effect in other seasons. However, there is some difference between the two, as C3 is
affected by large river discharges (i.e., 17,000 m* s°') while C6 is affected by small river discharge
(ie..~0.27 m’s™") but strong tidal mixing (i.e, ~ 2 m s™'). Both freshwater inputs and strong ocean
mixing would affect the non-temperature pCO:> component (pCO2_nonT), as these two processes
would bring DIC and nutrient enriched waters to the ocean surface. Indeed, as a good indicator of
these processes, SSS showed significant positive correlations (R = 0.42 at C3, and R = 0.23 at C6)
with pCO:_nonT at both stations. Meanwhile, significant correlations were also found between
the biological proxies (i.c., Chl and Kq) and pCO; nonT at site C6 (Table 4), suggesting the

biological uptake of CO: also has an effect on the non-temperature pCO: component. However,
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negative but insignificant correlations were found between biological proxies and pCOz nonT at
site C3. Considering the data quantity (N = 19) used in the correlation statistics, more data are
needed for further verification. On the other hand, the mixing between freshwater and open ocean
waters and the tidal mixing typically would bring colder waters to the ocean surface, and this
would also affect the surface ocean temperature. As a result, strong negative correlations (R = -
0.92 at C3, and R = -0.61 at C6) were found between pCO:_nonT and SST at both river-dominated

regions.

In the upwelling-dominated regions in both subtropical zone (i.e., C5) and temperate zone (i.e.,
C7), surface pCO; was found to be dominant by the non-temperature effect (see Section 3.1).
However, the seasonal patterns are quite different between the two regions, as surface pCO: varied
from high to low from spring to fall at C5. but from high to low from winter to summer at C7 (see
Figs. 2 and 3). Upwelling along the U.S. western coast in spring and summer brings lots of CO:
and nutrient enriched waters to the surface of these oceanic systems (e.g., Renault et al., 2016),
which would enhance the growth of phytoplankton. I€'s found that the intensities of the biological
uptake of nutrient and COa is much stronger at station C7 (i.e, peak Chl > 5 mg m™) than at station
C5 (i.¢., peak Chl < 2.5 mg m™) especially in spring. Thus, the competing processes of addition of
CO; through upwelling and the biological drawdown of CO: via phytoplankton uptake finally
leads to a net pCO: increase in spring at station C5. However, we did not find any significant
correlations between the biological proxies (i.c., Chl and Ky) and pCO:_nonT. Considering the
large uncertainties (~30%) in the satellite derived Chl and K. the signal to noise ratio could be
very low after removing the seasonality in these parameters, making it difficult to detect the

correlations between these parameters with pCO2_nonT. On the other hand, the upwelling waters
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are typically characterized as cold water, correspondingly, strong negative correlations were found

between pCO:_nonT and SST (R =-0.70 at C5 and R = -0.57 at C7, at p < 0.05).
4.2, Driving mechanisms in interannual surface pCO2

To further examine the dominant controls of surface pCO: over interannual time scales, the
interannual variations of the environmental variables (e.g., SST, SSS, and wind speed, atmospheric
pCO;) for cach buoy in Table | were also processed and analyzed (Table 3), Specifically, SST is
used as a proxy of the temperature effect (pCOz T), and SSS, wind speed, and atmospheric pCO»
were used as proxies of the non-temperature effect (pCOz_nonT). It should be clarified that Chi
and Ky were not used in this analysis mainly because of the data scarcities and large uncertainties

of these data in the study period of each buoy.

In the wopical and subtropical zones, the interannual surface pCO2 was found to be mainly
dominated by the non-temperature effect with exceptions in special ocean environments (e.g.,
river-dominated, upwelling-dominated) (see Section 3.2), However, the interannual anomalies of
SSS and Wind speed did not show clear signals in most stations, suggesting that there was hittle
change in the physical ocean environments (e.g., ocean mixing). In contrast, the atmospheric pCO:
all showed clear interannual increase for all the buoys located in the tropical and subtropical zones.
Therefore, it is most likely that, the dominant control of non-temperature effect on the interannual
increase of surface pCOx was mainly caused by the interannual changes in the air-sea CO» flux.
The air-sea CO2 flux mainly depends on the CO:z gas solubility which is related to SST, the gas
transfer velocity which is related to wind speed, and the relative difference between the
atmospheric pCO: and surface pCO: (e.g., Borges et al., 2005; Takahashi et al,, 2009; Wanninkhof
et al,, 2013). Since there is little changes in both SST and wind speed (buoys 01-02 and C1-CS,

sce Table 3), it is most likely that the interannual increase in surface pCO: was mainly driven by
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the atmospheric pCOz. Yet, it still could be possible that Chl and Ky may have some interannual
signals that dominates the non-temperature effect on surface pCO;. However, a recent study by
Chen et al. (prepared) did not find any interannual trend in both Chl and Ky in the different regions
of the Gulf of Mexico. Further studies need to be conducted for a clear interpretation of this non-

temperature effect.

In the temperate zone, surface pCO; was found 10 be mainly controlied by the temperature effect
over interannual time scales with some exceptions in special ocean environments (e.g., nver-
dominated, upwelling-dominated) (see Section 3.2). Interestingly. although SST did not show clear
iterannual patterns in tropical and subtropical zones, it did show significant interannual trends
with variable increasing rates between 0.17 and 0.65 "C yr' in the temperate zone, This finding
confirmed the dominant warming effects on surface pCO; over short-term interannual time scales
in the temperate zone, despite of the leading control of the non-temperature effect on the seasonal

changes of surface pCO: in this region.

In the river-dominated regions (represented by buoy C3 and C6), surface pCO; did not show clear
and significant interannual trends as presented in Figs, 4 and 5. At station C3, SSS showed a
significant decrease with a rate of -0.46 yr' over the period of 2009-2014, while at station C6, SSS
showed a significant but slight increase with a rate of 0.09 yr'' over the period of 2006-2014.
Therefore, it seems the insignificant increase (decrease) trend in surface pCO: at station C3 (C6)
was mainly caused by interannual decrease (increase) in SSS. Still, further investigation is needed

with more in situ time series data available.

In the upwelling-dominated regions (represented by buoy CS and C7), surface pCO; showed
decrease over interannual time scales at both C5 (-0.28 patm yr', at p > 0.05) and C7 (-5.69 28

patm yr', at p< 0.05). At both stations, SST and SSS showed significant interannual trends, while
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no significant interannual signal was found in the wind speed. Tt is suspected that, the strong
biological uptake of CO; with the sufficient supply of nutrients from upwelling may exceed the
enrichment of CO: from subsurface over interannual time scales, and the difference between the
two is getting stronger over years. Still, more ancillary data over long time series are required to

further investigation.
4.3. Implication and future improvements

Based on the buoy data time series located in various oceanic ccosystems, the seasonal and
interannual variations of surface pCO; were investigated in this study. We found that, over seasonal
time scales, surface pCO;: was mostly driven by the temperature effect in tropical and subtropical
zones and was mainly dominated by the non-temperature effect in temperate zones: and over
interannual time scales, surface pCOz was mainly controlled by the non-temperature effect in the
tropical and subtropical zones and was mainly driven by the temperature effect in the temperate
zone. Specifically, for the non-temperature effect either over seasonal or interannual time scales,
the effects of ocean mixing and air-sea CO; fluxes are expressed well by the environmental proxies
(e.g., SST, SSS, and wind speed). It is found that, atmospheric pCO: is an important parameter in
driving both seasonal and interannual surface pCO; at most buoy stations in this study. However,
this factor was not included in most of the published surface pCO: satellite remote sensing
algorithms. Thus it should be why these developed pCO: remote sensing algorithms are most

limited in capturing the interannual variabilities in surface pCO..

Although the general seasonal and interannual variations patterns in surface pCO; and its dominant
controls of the temperature or non-temperature effects as well as the dominant environmental

variables were found, future improvements are still needed to increase the accuracy of satellite

mapping of surface pCOa.
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Specifically, in the coastal oceans, the biological activities are known to be active and it is thought
to be an important process in modulating surface pCO: (Norman et al,, 2013; Tkawa et al,, 2013;
Huang et al.. 2015). However, due to the data insufficiencies of both the field and concurrent
satellite measurements, no significant correlations were found between surface pCO: and the
satellite-based optical parameters (i.e.. Chl, K4) for most coastal ocean buoys. It is possible that
the biological proxies may vary on different time scales from that of the surface pCO.. This is not
an unreasonable possibility, considering the complexities of the biological processes (i.e.,
photosynthesis, respiration, and calcification) in modulating surface pCO:, In the future, instead
of using limited satellite-based Chl and Ky data, in situ time series of the biological proxies (i.e.,
dissolved oxygen, apparent oxygen utilization, nutrients, Chl fluorescence, and Ky) should be
measured together with surface pCO: for a better understanding of the biological role in changing
surface pCO:. More importantly, the algal bloom effect on surface pCO: needs to be thoroughly

investigated by examining the pCO> variations before, during, and after an algal bloom.

In terms of interannual variations of surface pCOy, the current analyses were based on 3-10 years
of time series data, therefore, the derived short-term interannual variabilities may not be
representative of a long-term (i.e., = 30 years) trend. Besides, the analyses were based on data
collected over different time periods. From Figs. 4 and 5. it seems the interannual variation rate of
surface pCO; changes over different study periods. For example, at station C4, the surface pCO:
seems to be increasing between 2006 and 2012 but seems to be decreasing between 2012 and 2015.
Therefore, to better quantify the interannual variabilities in surface pCOa, more time series data
are needed. Furthermore, it is found that non-temperature effect (pCO2_nonT) dominates the
interannual changes of surface pCO: in most cases, with a much higher rate than the increase of

atmospheric pCO:. To further differentiate the eflects of air-sea CO: change, biological effects,
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and vertical mixing, and quantify the role of each process in the interannual variations of surface
pCO:, long term field-measured biological data (i.¢., oxygen, nutrients, Chl, and Ky) and physical

data (i.c., mixed layer depth, and wind speed) are needed.

Last, but not least, for similar types of coastal environments (i.e., coral reef, niver-dominated, and
upwelling) the dominant control of surface pCO; varies, due to the different environmental
characteristics (e.g., the strength of river discharges and tidal mixing) in each system at different
latitudes. To further interpret the difference in surface pCO; in the same type of coastal
environment, more ancillary data are also needed to better characterize the carbonate process in

cach coastal ecosystem.
5. Conclusion

Using both in situ time series data and satellite data at different latitudes along the coasts of the U.
S. and its territories, the dominant controls and driving mechanisms of surface pCO; on seasonal
and short-term interannual time scales were quantified and analyzed. The temperature (non-
temperature) effect was found to be dominant in modulating the seasonal pCO; variations in the
tropical and subtropical zones (temperate zone) and the interannual pCO: variations in the
temperate zone (tropical and subtropical zones), with exceptions in a few special coastal ocean
environments (e.g., coral reefs, river-dominated, upwelling-dominated). The study also suggests
future directions in the development of surface pCOs satellite remote sensing algorithms, For
example, atmospheric pCO:2 should be used in the surface pCO2 remote sensing algorithms to
better capture the interannual variabilities in surface pCOz Meanwhile, to further examine the
driving mechanisms of surface pCO2 on different time scales, more data (e.g., Chl) collected over

longer time series are required for future investigation,

31

228

www.manharaa.com




Acknowledgements

This research was supported by a University of South Florida student fellowship. The authors are
indebted to all researchers, including those of NOAA NCEI, who have collected, processed,
quality controlled, and shared all the cruise survey data. These data played an essential role in this
work. The authors also thank NASA for providing MODIS ocean color data, NCEP for providing

the wind speed data,
Reference

Bai. Y., Cai, W. J., He, X., Zhai, W., Pan, D., Dai, M., and Yu. P. (2015). A mechanistic semi-
analytical method for remotely sensing sea surface pCO: in river-dominated coastal oceans:
A case study from the East China Sea. Journal of Geophysical Research: Oceans, 120(3),

2331-2349. htips://dor.org/10.1002/2014JC010632.

Bailey, S. W., and Werdell, P, J. (2006). A multi-sensor approach for the on-orbit validation of
ocean color satellite data products. Remote Sensing of Environment, 102(1-2), 12-23.

htps://doi.org/10.1016/j.rs¢.2006.01.015.

Bamnes. B. B.. and Hu, C. (2015). Cross-sensor continuity of satellite-derived water clarity in the
Gulf of Mexico: Insights into temporal aliasing and implications for long-term water clarity

assessment, IEEE Transactions on Geoscience and Remote Sensing, 53(4), 1761-1772.

Bennington, V., McKinley, G. A., Dutkiewicz, S., and Ullman, D. (2009). What does chlorophyll
variability tell us about export and air-sea CO; flux variability in the North Atlantic? Global

Biogeochemical Cycles, 23(3).

32

229

www.manharaa.com




Borges, A, V. (2005). Do we have enough pieces of the jigsaw to integrate CO; fluxes in the coastal

ocean? Estuaries, 28(1), 3-27.

Borges, A. V., Delille, B.. & Frankignoulle, M. (2005). Budgeting sinks and sources of COz in the

coastal ocean: Diversity of ecosystems counts. Geophysical research letters, 32(14).

Cai, W, J., Dai, M., and Wang, Y. (2006). Air-sea exchange of carbon dioxide in ocean margins:

A provinee-based synthesis. Geaphysical Research Letters, 33(12),

Chen, C.-T. A., etal. (2003), Continental margin exchanges, in Ocean Biogeochemistry: The Role
of the Ocean Carbon Cycle in Global Change, edited by M. J. R. Fasham, pp. 53-98,

Springer, New York.

Chen, S., Hu, C., Byme, R. H., Robbins, L. L., & Yang, B. (2016). Remote estimation of surface
pCO: on the West Florida Shelf. Continental Shelf Research, 128, 10-25,

https://doi.org/10.1016/.¢5r.2016.09.004,

Chen. S.. Hu, C., Cai, W. J., & Yang, B. (2017). Estimating surface pCO in the northern Gulf of
Mexico: Which remote sensing model to use? Continental Shelf Research. 151, 94-110.

hteps://dor.org/10.1016/1.¢5r.2017.10.013.

Chen, S., C. Hu, B, B. Barnes, R. Wanninkhof, W, J, Cai, and L. Barbero. A machine learning
approach to estimate surface ocean pCO; from satellite measurements, Remote Sensing of

Environment (under review),

Cross, J., J. Mathis, N. Monacci. S. Musielewicz, S. Maenner, and J. Osborme (2014a). High-
resolution ocean and atmosphere pCO: time-series measurements from mooring

GAKOA_149W 6ON.

33

230

www.manharaa.com




http://ediac.esd. oml, gov/fip/oceans/Moorings/GAKOA _149W 60N/,  Carbon  Dioxide
Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy,
Oak Ridge, Tennessee. doi: 10.3334/CDIAC/OTG.TSM_GAKOA 149W 60N,

Cross, 1., J. Mathis, N. Monacci, S. Musielewicz, S. Maenner, and J. Osborne (2014b). High-
resolution ocean and atmosphere pCO: time-series measurements from  mooring
Kodiak _152W 57N, http://ediac,oml, gov/fip/oceans/Moorings/Kodiak_152W 57N/,
Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US
Department of Energy., Oak Ridge, Tennessee. doi:
10.3334/CDIAC/OTG.TSM_KODIAK 152W 57N,

Cross, J.. J. Mathis, N. Monacci, S. Musielewicz, S. Maenner. and J. Osbome (2014¢). High-
resolution ocean and atmosphere pCO: time-series measurements from mooring
Southeast AK_56N_134W. hitp://ediac.ess-
dive.Ibl.gov/fip/oceans/Moorings/Southeast AK_S6N_[34W/, Carbon Dioxide
Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy,

Oak Ridge, Tennessee. doi: 10.3334/CDIAC/OTG.TSM_Southeast AK_S6N_134W

Fay, A. R., & McKinley. G. A, (2013). Global trends in surface ocean pCO: from in situ data.

Global Biogeochemical Cycles, 27(2), 541-557.

Fay, A. R, and McKinley, G. A. (2017). Correlations of surface ocean pCO: to satellite

chlorophyll on monthly to interannual timescales. Global Biogeochemical Cycles, 31(3),

436-455.

231

www.manharaa.com




Hales, B., Strutton, P. G., Saraceno, M., Letelier, R., Takahashi, T., Feely, R., Sabine, C., and
Chavez, F, (2012), Satellite-based prediction of pCO: in coastal waters of the castem North

Pacific. Progress in Oceanography, 103, 1-15.

Huang, W. J., Cai, W_J., Wang, Y., Lohrenz, S. E., and Murrell, M. C. (2015). The carbon dioxide
system on the M ississippi R iver = dominated continental shelf in the northern Gulf of

Mexico: 1. Distribution and air-sea CO: flux. Journal of Geophysical Research: Oceans,

120(3), 1429-1445.

Ikawa, H., Faloona, 1., Kochendorfer, I., Paw, U,, and Oechel, W, C, (2013). Air-sea exchange of
CO: at a Northern California coastal site along the California Current upwelling system,

Biogeosciences, 10(7), 4419-4432,

Lee, Z. P., Darecki, M., Carder, K. L.. Davis, C. O., Stramski, D., and Rhea, W. J. (2003). Diffuse
attenuation coefficient of downwelling irradiance: An evaluation of remote sensing
methods.  Journal of Geophysical Research: Oceans, [1(C2), C02016.

https://doi.org/10.1029/2004JC002573.

Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. 1, ... Global Carbon Budget

2016, Earth Syst. Sci. Data, 8, 603-649, https://doi.org/10.5194/¢ssd-8-605-2016, 2016.

Lohrenz, S. E., and Cai, W, J, (2006). Satellite occan color assessment of air-sea fluxes of CO;z in
a river-dominated coastal margin. Geophysical Research Letters, 33(1), LO1601. doi:
10.1029/2005GL023942.

Lohrenz, S, E., Cai, W. I, Chen, F,, Chen, X., and Tuel, M. (2010). Seasonal variability in air-sea
fluxes of CO: in a river-influenced coastal margin, Journal of Geophysical Research:
Oceans, 115(C10), C10034. doi: 10.1029/20091C005608.

35

232

www.manharaa.com




Lohrenz, S, E., Cai, W, 1., Chakraborty, S., Huang, W. 1., Guo, X., He, R., Xue Z., Fennel K.,
Howden S., and Tian, H. (2018). Satellite estimation of coastal pCO; and air-sea flux of
carbon dioxide in the northern Gulf of Mexico, Remote Sensing of Environment, 207, 71-

83. hetps://doi.org/10.1016/j.rse.2017.12.039.

Muller-Karger, F. E,, Varela, R., Thunell, R., Luerssen, R., Hu, C., and Walsh, J. J, (2005). The
importance of continental margins in the global carbon cycle. Geophysical research letters,

32(1): LO1602, doi: 10.1029/2004GLO2 1346,

Norman, M., Parampil, S. R., Rutgersson, A., and Sahlée, E. (2013). Influence of coastal upwelling
on the air-sea gas exchange of CO: in a Baltic Sea Basin. Tellus B: Chemical and Physical

Meteorology, 65(1), 21831.

Patt, F. S, etal., “Algorithm updates for the fourth SeaWiFS data reprocessing, NASA tech memo
2003-206892, volume 22,7 in SeaWiFS Post-launch Technical Report Series, S. B. Hooker
and E. R. Firestone, Eds. Greenbelt, MD, USA: National Acronautics and Space

Administration (NASA), 2003,

Randerson, J. T.. Thompson, M. V., Conway, T. |, Fung. L. Y., and Field, C. B. (1997). The
contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric

carbon dioxide. Global Biogeochemical Cycles, 11(4), 535-560.

Renault, L., Deutsch, C., McWilliams, J, C., Frenzel, H., Liang, J. H,, and Colas, F. (2016). Partial
decoupling of primary productivity from upwelling in the California Current system.

Nature Geoscience, 9(7), 505.

36

233

www.manharaa.com




Sabine, C. (2005), High-resolution ocean and atmosphere pCO: time-series measurements. The
State of the Ocean and the Ocean Observing System for Climate, Annual Report, Fiscal
Year 2004, NOAA/OGP/Office of Climate Observation, Section 3.32a, 246-253.

Sabine, C,, N, Bates, S. Maenner, R. Bott, and A. Sutton (2010). High-resolution ocean and
atmosphere  pCO2  time-series  measurements  from  mooring  BTM_64W 32N,
http:/fediac.ess-dive. Ibl.gov/fip/oceans/Moorings/BTM_64W 32N/, Carbon  Dioxide
Information Analysis Center, Ouk Ridge National Laboratory, US Department of Energy,

Oak Ridge, Tennessee. doi: 10.3334/CDIAC/otg. TSM_BTM _64W 32N,

Signorini, S. R., Mannino, A., Najjar, R. G.. Friedrichs, M. A., Cai, W. 1., Salisbury, J., Wang, Z.
A., Thomas, H., and Shadwick, E. (2013). Surface ocean pCO; seasonality and sea-air CO2
flux estimates for the North American east coast. Journal of Geophysical Research: Oceans,

T1R(10), 5439-3460.

Sutton, A., C. Sabine, C. Dietrich, S, Maenner, S. Musiclewicz, R. Bott, and J. Osborne (2010).
High-resolution ocean and atmosphere pCO; time-series measurements from mooring
WHOTS 158W 23N. http://cdiac.ess-
dive.lbl.gov/fip/oceans/Moorings/WHOTS _[58W 23N/, Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, US Department of Energy. Oak Ridge,

Tennessee. doi: 10.3334/CDIAC/OTG.TSM_WHOTS

Sutton, A., C, Sabine, W.-1. Cai, S. Noakes, S. Musielewicz, S. Maenner, C. Dietrich, R. Bott, and
J. Osborne (2011), High-resolution ocean and atmosphere pCO» time-series measurements
from mooring GraysRf 8IW_3IN.

http://cdiac.esd.oml.gov/fip/oceans/Moorings/GraysRf 81W 3IN/,  Carbon  Dioxide

37

234

www.manharaa.com




Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy,

Oak Ridge, Tennessee. doi: 10.3334/CDIAC/OTG. TSM_GRAYSRF_S1W _3IN,

Sutton, A.. C. Sabine, U. Send, M. Ohman, S. Musielewicz, S. Maenner, C. Dietrich, R. Bott, and
J. Osbome (2013a). High-resolution ocean and atmosphere pCO:  time-series
measurements from mooring CCE2Z_121W _34N.
httpi/fediac.esd.oml gov/fiploceans/Moorings/CCE2_121W _34N/,  Carbon  Dioxide
Information Analysis Center, Ouk Ridge National Laboratory, US Department of Energy,

Oak Ridge, Tennessee. doi: 10.3334/CDIAC/OTG.TSM_CCE2_121W 34N,

Sutton, A.. C. Sabine, D. Manzello, S. Musielewicz, S. Maenner, C. Dietrich, R. Bott, and J.
Osborne (2013b). High-resolution ocean and atmosphere pCO: time-series measurements
from mooring Cheeca 80W _25N. http://ediac.ess-
dive.lbl.gov/fip/oceans/Moorings/Cheeca 80W_25N/.  Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,

Tennessee. doi: 10.3334/CDIAC/OTG.CHEECA_S0OW_25N.

Sutton, A., C. Sabine, J. Salisbury, D. Vandemark, S. Musiclewicz, S. Macenner, C. Dietrich, R.
Bott. and J. Osbome (2013c). High-resolution ocean and atmosphere pCO: time-series
measurements from mooring NH_70W_43N.
http://ediac.esd.oml.gov/fip/oceans/Moorings/NH_70W 43N/, Carbon Dioxide
Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy,

Oak Ridge, Tennessee. doi: 10.3334/CDIAC/OTG.TSM_NH_70W_43N.

Sutton, A., C. Sabine, S. Music¢lewicz, S. Maenner, C. Dietrich, R, Bott, and J. Osbormne (2013d).

High-resolution ocean and atmosphere pCO: time-series measurements from mooring

235

www.manharaa.com




WA _125W 47N, http://ediac.ess-dive.lbl.gov/ftp/oceans/Moorings WA _125W_47N/,
Carbon Dioxide Information Analysis Center, Oak Ridge Natiopal Laboratory, US
Department of Energy, Oak Ridge. Tennessee. doi:

10.3334/CDIAC/OTG.TSM_WA_125W_47N.

Sutton, A, C. Sabine, S, Howden, S. Musielewicz, S. Maenner, C. Dietrich, R. Bott, and J. Osborne
(2014a). High-resolution ocean and atmosphere pCO; time-series measurements from
mooring CoastalMS_88W 30N. http://ediac.ess-
dive.lbl.gov/fip/oceans/Moorings/CoastalMS_88W 30N/, Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,

Tennessee.doi: 10.3334/CDIAC/OTG.TSM_COASTALMS 88W 30N,

Sutten, A., C. Sabine, J. Morell, S. Musielewicz, S. Maenner, C. Dietrich, R. Bott, and J. Osborne
(2014b). High-resolution ocean and atmosphere pCQO; time-series measurements from
mooring La_Parguera 67W_ISN,
http://ediac.esd.oml.gov/fip/oceans/Moorings/La_Parguera 67W I8N/, Carbon Dioxide
Information Analysis Center, Ouk Ridge National Laboratory, US Department of Energy,

Oak Ridge, Tennessee. doi: 10.3334/CDIAC/OTG.TSM _La_Parguera 67W 18N,

Sutton, A. 1., Sabine. C. L., Maenner-Jones, S., Lawrence-Slavas, N., Meinig, C.. Feely, R. A.,
Mathis, J. T., Musielewicz, S., Bott, R., McLain, P. D., Fought. H. J_, and Kozyr. A. (2014c).
A high-frequency atmospheric and seawater pCO: data set from 14 open-ocean sites using

a moored autonomous system. Earth System Science Data, 6(2), 353-366.

Sutton, A., C. Sabine, S, Maenner, S. Musielewicz, R, Bott, and J. Osbomne (2015), High-resolution

ocean and atmosphere pCO; time-series measurements from mooring Papa_145W _S0N.

39

236

www.manharaa.com




Takahashi, T., Olafsson, J., Goddard, J, G., Chipman, D. W., and Sutherland, S. C. (1993).
Seasonal variation of CO; and nutrients in the high-latitude surface oceans: A comparative

study. Global Biogeochemical Cycles, 7(4), 843-878.

Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A, Metzl, N., Tilbrook, B., ... and Olafsson,
J. (2002). Global sea—air CO: flux based on climatological surface ocean pCO:, and
seasonal biological and temperature effects. Deep Sea Research Part 11: Topical Studies in

Oceanography, 49(9-10), 1601-1622,

Takahashi, T.. Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A, Chipman, D. W, ...
and Watson, A. (2009). Climatological mean and decadal change in surface ocean pCO2,
and net sea-air CO: flux over the global oceans. Deep Sea Research Part 11: Topical Studies

in Oceanography, 56(8-10), 554-577.

Takahashi, T., Sutherland, S. C., Chipman, D, W., Goddard, 1, G., Ho, C., Newberger, T, ... and
Munro, D. R, (2014). Climatological distributions of pH, pCOz, total CO», alkalinity, and
CaCOj; saturation in the global surface ocean, and temporal changes at selected locations.

Marine Chemistry, 164, 95-125.

Tucker, C. )., Fung, L Y., Keeling. C. D., and Gammon, R. H. (1986). Relationship between
atmospheric CO» variations and a satellite-derived vegetation index. Nature, 319(6030),

195,

Ullman, D. J.. McKinley, G. A., Bennington, V., and Dutkiewicz, S. (2009). Trends in the North

Atlantic carbon sink: 1992-2006. Global Biogeochemical Cycles, 23(4).

Wanninkhof, R., Park. G. H., Takahashi, T.. Sweeney. C.. Feely, R. A., Nojiri, Y., ... & Le Quere,

C. (2013). Global ocean carbon uptake: magnitude, variability and trends.

237

www.manharaa.com




Wanninkhof, R., Park, G.-H., Takahashi, T., Sweeney, C,, Feely, R., Nojiri, Y., Gruber, N., Doney,
S. C., McKinley, G. A., Lenton, A., Le Quéré, C., Heinze, C., Schwinger, J., Graven, H.,
and Khatiwala, S. (2013), Global ocean carbon uptake: magnitude, variability and trends,

Biogeosciences, 10, 1983-2000. doi: 10.5194/bg-10-1983-2013.

Wong, C. S., & Chan, Y, H. (1991). Temporal vanations in the partial pressure and flux of CO: at

ocean station P in the subarctic northeast Pacific Ocean. Tellus B, 43(2), 206-223,

41

238

o AJLb

www.manharaa.com




Table 1. Summary of i situ time series data compiled for this study (from low lTatitude to high
latitudes in sequence). Buoys of O1-02 and C1-CS are located in the tropical and subtropical zones
(1.e.. latitude within 0~35°N, shaded in blue), and buoys of O3 and C6-C10 are located in the
temperate zone (i.e., latitude within 35-66.5°N, shaded in green). Note that “O" represents Open

Ocean. and "C” represents Coastal Ocean. See Fig. 1 for the location of each buoy.

xS

Geolocatlon Period SST SSS
30M19-2015 | 25.53-3171 | 31.713-36.57

T7.954°N, 67.051W_| 3009-2013 | 235231 7

360N, 157970'W | 2007-3015 | 22003530 | 34033557 343.1-436.7
JIREN W | 2010-2015 | 16753313 | 32.45.38.82 1R2.4-736.

" 30.000'N, tm!'tiuoE W | 20002014 | 12.46-3242 | 14.00-35.64 7216075
31I00N, 8D, 15 | 084-30.9 | 29.00-36.80 2682615 %
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Table 2. Seasonal amplitudes of atmospheric pCO;, surface pCO; and its components (pCO2 T

and pCO; nonT), and the relative importance (Eq. 6) of the temperature and non-temperature

cffects in affecting surface pCO: at cach buoy location (Table 1, from low latitude to high latitudes

in sequence). Note that statistics of the buoys located in the tropical and subtropical zones and

temperate zone are shaded in blue and green, respectively.

S i amplitede (patm)

Relative Impert (RN ot

Atmaspheric pCO: pCO: T _p€O; non® PCO: T and pCO,_monT (Eqy. 6)
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Table 3, Interannual variabilities (i.¢., interannual trend) of the atmospheric pCO;, surface pCO;

and its components (pCO:z T and pCO2 nonT), and the corresponding environmental variables

based on the buoy time series data in Table | and Fig. | (from low latitude to high latitudes in

sequence). Statistics of the buoys located in the tropical and subtropical zones and temperate zone

are shaded in blue and green, respectively. Note that values in brackets are the corresponding R’

of each statistic of the interannual trend, and statistics are highlighted in blue if the corresponding

p value is < 0,05,
Intersnnual trend
Buay s;c":: Atmespherie | pCOLT | pCOLment |  sST o \:::.-};T Period N
1 oo | 2wamis | m
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Table 4, Correlations (Pearson correlation coefficient — R) between surface pCO: as well as its
components (pCO: T and pCO:; nonT) and different environmental variables (i.e., SST, SSS,
atmospheric pCO;, Chl and Ky in logs scale, and wind speed) for all the buoys listed in Table |
from low latitude to high latitude in sequence. Statistics of the buoys located in the tropical and
subtropical zones and temperate zone are shaded in blue and green, respectively. Note that the

value of R is highlighted in blue if the corresponding p value is < 0.05.
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Surface OO, [ 030 BTN NaN
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Locations

Fig. 1. Spatial distributions of the buoys listed in Table 1. Buoys of 01-02 and C1-C5 are located
in the tropical and subtropical zones (i.e., latitude within 0~35 “N). and buoys of O3 and C6-C10
are located in the temperate zone (i.e., latitude within 35~66.5 "N). Note that “O” represents Open

Ocean, and “C™ represents Coastal Ocean, See Table | for detailed description of the data collected

from each buoy.
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Fig. 2. Seasonal variations of atmospheric pCOy, surface pCO; and its components (pCO;_T and
pCO2_nonT) of the buoys located in the tropical and subtropical zones (see Table | and Fig. 1)

from low latitude to high latitude in sequence. See Table 2 for detailed statistics.
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Fig. 4. Interannual variabilities of atmospheric pCO: and surface pCO; of the buoys located in the
tropical and subtropical zones (see Table | and Fig, 1) from low latitude to high latitude in
sequence. The overlaid dashed red line is the interannual variation trend. See Table 3 for detailed

statistics.

52

249

www.manharaa.com




» L]
.

» @ - >0 ° ~ -
i ->~*~ oy ! s A 2 " - o o 0, @
B . b G 4
= o %8 &

i". '—-’{ e 2 & i -~ ., < -
20 Yew - Vear
2000 D006 D0NT JUe 200 2000 J0EE 01T DML NI 208 i dmr D000 200w 20T D000 2004 2008 2011 JUET 2008 004 2Nt dwis et
Statlon €7 Anoemalios of atmospheric pO02 Stathen €T Ancemaliex of surfisce pC02
» o r . p
-
" 2&_‘._ » -8 - . @
i -l 4 : -
- B s ettt -~ = L L 3 i‘.'ﬁ\ -
a & i - v L
,:.lu .? e { . - .'o .
a0 You L) Vear

0 0 2T JU08 290% 20 J00E 2002 208 0l4 2eis deas 2t D00 0% DT DO SO0 200H JULE WA DWIE 200 S Jwie 2y

Sttiea 0) lies of atmospharic pCOY Stutien O3 Ancemaliex of sutface p002

» 1L

fu] ST § ]

You ™ Yobr
209 200 0T A 2004 2010 2001 20T 200N 304 1S ie 2 2060 0 30T 3006 300 2000 2011 JUET 3014 2004 2048 WA 3097
Stution OF A cemalion of atmospheric pO02 Stuthen 8 Anvrmalies of sarface pd (02
™
" »
i . ! o T
" ‘W—- ® - ¢ T
. & . - o
e:-u 3. RN
.
™ Yem T Yo
008 3604 DT 3000 0% 200 211 30T 00N 3064 J01S e 201) 2009 208 207 S X004 2010 3011 21T DNY 2014 3008 w2017
Stathon €3 gponmslies of atmospheric pCOT Stathen €Y Anormalics of surfsce pCO2
m 100

OO, (patany
z
.
-
OO, ()
-

- .
m B J - .
m Yow T Yeu
2000 200 20T DN0R 2008 DUIW 2001 2003 DeI 2008 2w 200 200 008 0w 2007 200w 200w 2010 INIE 22 3010 2008 2003 DNie 2ot
Stuthen CI8 \ o ormalios of simsospheric pC0O2 Matben C10 Asnormalies of sarface pi0O2
n 1
w o » .
¥ s | patie
o T R
{-n s‘, { 0 . A
B Yew ) You
D00 2 0T AN JOO% JUAR 3BEE 20T 2001 2004 et Juie niY J00% Dt 0T 20 00 200w 2001 JRET N0 D014 2008 M uY

53

250

www.manharaa.com

SR lel_i'.Ll




Fig. 5. Same as Fig, 4, here are the interannual variabilities of the atmospheric pCO; and surface
pCO: of the buoys located in the temperate zone (sec Table | and Fig. 1) from fow latitude to high

latitude in sequence. The overlaid dashed red line is the interannual variation trend. See Table 3

for detailed statistics.
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